LASER

COLOR COVIPUTER

350/500/ 700

MAIN UNIT
MANUAL v

[
¢ 4
]

P
= b
e

&

.
VB

PREFACE

The LASER 350/500/700 Main Unit Manual has been written to serve
as a tutorial as well as reference source for the LASER 350/500/700
user. These three models of personal computer are built around the
same CPU Z80A and they have similar structure. In fact, they share the
same resident ROM BASIC Interpreter.

The manual is organized in three parts. Part | contains general infor-
mation such as how to connect the system, how to care for the com-
puter and specifications for the three models.

Part Il (BASIC Programming Manual) is written for those who wish to
learn BASIC programming on this series of computer. Moreover, it can
also serve as a general introduction to programming in BASIC on any
system. BASIC commands are presented in sequence, from the very
simple “PRINT"” command, to more complex Assembly Language
Subroutine Calling.

Part 111 is written in particular for the more advanced users of computer

and for the electronics hobbyists who wish to probe the internal
structure of this series of computer. Hardware design details, memory

organization and software aspects are discussed. Novice users may skip
this part.

Finally, the appendix at the end of this manual serves as a constant
reference tool while you progress with your computer.

All rights reserved. Reproduction or use, without express permission,
of editorial or pictorial content, in any manner, is prohibited. No
patent liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the pre-
paration of this book, the publisher assumes no responibility for errors
or omissions. Neither is any liability assumed for damages resulting
from the use of information contained herein.

Copyright 1985, Video Technology Computers Ltd.

TABLE OF CONTENT

PART 1 USER'S MANUAL

@ What should be in the box

@ Connection diagrams and Switches

@ Trouble-shooting Checklist

@ How to care for your computer

@ Differences between LASER 350/500/700
@ Specifications

PART 2 BASIC REFERENCE

MANUAL
INDUCTION

CHAPTER 1

THE COMPUTER

@ What is a computer

@ What makes up a computer system
@ What is a program

@ Computer Languages

@® BASIC

CHAPTER 2

HOW TO USE YOUR COLOR COMPUTER

® To start

® How to operate the keyboard
@ The PRINT Command

® SYNTAX ERRORS

® EDITING

@ |INSERT

@ A look ahead

N W

11
13

20

25

CHAPTER 3

USING YOUR COLOR COMPUTER AS A SIMPLE
CALCULATOR 43
@ Simple instructions

@ Order of numeric operations
@ Brackets

CHAPTER 4

CONSTANTS AND VARIABLES 47
@ Constants

@ Variables

® LET

@ Semi-colons and commas

@ Colons

CHAPTER 5

INTRODUCTION TO BASIC PROGRAMMING 51
@ Immediate Mode/Deferred Mode

@® REM

® [NPUT

® NEW

® RUN

@ LIST

@ Pause in listing

® Delete a line

CHAPTER 6

COMPUTER PROGRAMMING REVISITED

® GOTO

® To halt program execution
® CONT

® STOP

@ END

® CLEAR

56

CHAPTER 7
NUMERIC FUNCTIONS

@ What is a function
@ ABS

@ SGN

@ SQR

® LOG

@ EXP

@ INT

@ FIX

® RND

@ SIN

@ COS

@ TAN

@ ATN

@ User defined functions

CHAPTER 8

STRINGS

@ String variables

@ String functions
® LEN

® STR $

@ VAL

® LEFT $

@ RIGHT $

@ MID $

® ASC

® CHR $

@ OCT$

® HEX $

® STRING $

® INKEY ¢

@ INSTR

@ INPUT A$

@ LINE INPUT A$ -
@ INPUT $

@ String comparisons

61

67

CHAPTER 9

CONDITIONS
@ |F... THEN...ELSE
@ Conditional branching

@ Logical operators
@ Truth Tables

® ON...GOTO/ON...GOSUB

® ON ERROR GOTO
@ RESUME

CHAPTER 10
LOOPING

"®@FOR...TO

® NEXT

® STEP

® WHILE ... WEND

CHAPTER 11

SUBROUTINES

® GOSUB
® RETURN

CHAPTER 12
LIST AND TABLES
® ARRAYS

® DIM

@ OPTION
® ERASE

CHAPTER 13

READ, DATA, RESTORE

® READ
® DATA
® RESTORE

77

85

89

93

97

CHAPTER 14

PEEK AND POKE

® PEEK
@ POKE

CHAPTER 15
GRAPHICS

@ Graphics Mode Vs Text Mode
® COLOR

@ SET

® RES

@ POINT

@ DRAW

@ MOVE

@ Graphics Characters

CHAPTER 16

SOUND AND MUSIC

@ SOUND
® MUSIC

CHAPTER 17
STORING PROGRAMS ON TAPE

@ Setting it up
® CLOAD

@® CSAVE

@ VERIFY

@ CRUN

@ PRINT #

@ INPUT#

101

103

117

121

CHAPTER 18

PRINT FORMATTING COMMANDS
® WIDTH

® TAB

® NULL

® SPC

® SPACE $

® PRINT USING

® WRITE

CHAPTER 19
USING A PRINTER

® LLIST
@ LPRINT -

CHAPTER 20

BASIC PROGRAMMING UTILITY COMMANDS AND

FUNCTIONS

® AUTO

® RENUM
® FREE

® SWAP

® POS

® LPOS

® TRON/TROFF
® ERR/ERL
® ERROR
@ INP

® OUT

® WAIT

® KEY

® JOY

127

133

135

CHAPTER 21

SPECIAL DATA TYPES AND CONVERSION BETWEEN

TYPES 147
@ Data Types

@ DEF INT/SNG/DBL/STR

® CDBL

@ CINT

@® CSNG

@ CVI/CVS/CVD

® MKI $/MKS $/MKD $

CHAPTER 22
USING ASSEMBLY LANGUAGE SUBROUTINE 155

® DEF USR
® USR

@ CALL

® VARPTR

CHAPTER 23
HINTS ON MORE EFFECTIVE PROGRAMMING 159

PART 3 TECHNICAL REFERENCE
MANUAL

CHAPTER 1
MEMORY ORGANIZATION 165

® BANK-SWITCHING
® Memory Usage
@ |/O Ports Usage

CHAPTER 2

DISPLAY MODES 175
@ TEXT Mode

® TEXT Mode Screen Map

@ Graphics Mode
@ Graphics Mode Screen Map

CHAPTER3
HARDWARE CONFIGURATION 189

@ System Overview

@® Z80A CPU

@ RAM Subsystem

@® ROM Subsystem

@® Master Timing Generator

® Integrated Video, Dynamic RAM Timing and 1/0 Proces-
sor Subsystem

@® Keyboard

@® Sound Output

@ Cassette Interface

@® Video Output

@® RF Output

® Power Adaptor Module (LASER 350/500/700)

® Power Supply Unit (LASER 700)

® Floppy Disk Drive Controller Interface (LASER 700)

® Centronics Printer Interface (LASER 700)

@® Expansion Bus Connectors

CHAPTER 4
SOFTWARE ASPECTS 17

® ROM Cartridge Entry Points
® Bootstrapping of Floppy Disk
® Useful Subroutines

@ System Variables

® User interrupt routine

® Basic text pointers

® Screen Control Codes

CHAPTER 5
SYSTEM MONITOR 227

@ System Monitor Overview
@ Entering and Leaving the Monitor
@ Monitor Commands

APPENDIX

A. BASIC ERROR MESSAGE & ERROR CODES 421
B. .DERIVED MATHEMATICAL FUNCTIONS 246
C. ASCII CHARACTER CODE CHART 249
D. ESCAPE SEQUENCE FUNCTIONS 251
E. KEY CODE ASSIGNMENT 253
F. DEFAULT FUNCTION KEY DEFINITION 257
G. GRAPHICSCHARACTER SET 259
H. BASIC TOKEN TABLE 261
. COLOR CODE 267
J. SUMMARY OF BASIC COMMANDS AND FUNCTIONS 269
K. SUMMARY OF SYSTEM MONITOR COMMANDS 273
L. CIRCUIT SCHEMATIC DIAGRAMS 277
M. VARIATION BETWEEN DIFFERENT MODELS 297
N. BASIC APPLICATION PROGRAMS 301

PART I
USER’S MANUAL

Congratulations on buying the LASER 350/500/700!
You have bought one of the finest home computers available today.

Before starting to operate your computer, we suggest that you read this
part of the manual carefully.

Moreover, you will need this manual in the future. So you should not
throw it away. Rather you should have it at hand as you progress along
the computing highway.

WARNING: To prevant fire or electric shock, do not expose this
computer to rain or moisture.

No user servicable parts inside. Do not open the cabinet
of the computer unless you are instructed to do so,
such as when installing an expansion card.

IMPORTANT INFORMATION

The following message is valid for NTSC FCC versions only, so it may
or may not apply to your model.

This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict, accordance with the manu-
facturer’s instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits
for a Class B computing device in accordance with the specifications in
Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential install-
ation. However, there is no guarantee that interference will not occur
in a particular installation. if this equipment does cause interference to
radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the inter-
ference by one or more of the following measures:

Reorient the receiving antenna

Relocate the computer with respect to the receiver

Move the computer away from the receiver

Plug the computer into a different outlet so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/
television technician for additional suggestions. The user may find the
following booklet prepared by the Federal Communications Com-
mission helpful:

‘How to Identify and Resolve Radio-TV Interference Problems’.

This booklet is available from the U.S. Government Printing Office,
Washington, DC20402, Stock No. 004-000-00345-4,

WHAT SHOULD BE IN THE BOX

This Manual.

Your Color Computer main unit.

A power adaptor (for LASER 350/500 only).

A cord to connect your computer to the TV 'Antenna Qutlet.

PON~

To get your compuer working you will need a color TV,aB/WTVora
composite green monitor.

Top view @ Bottom view

)

H

Right side view

[ﬂ%

!
1

il

1
@—foi L

gxpansion Module

Power Expansion Modules

Cassette
Recorder

LASER 350

y

Rear panel

- i

@ . . Bottom view

1 ‘__J

Power

4 Adaptor
R
(D i}
Composite U
Monitor

=] =

Expansion Modules

Rear panel

Expansion Modules

Cassatte
Recorder

LASER 500

@ Bottom view

Top view

O

|

O

Printer

Rear panel

Floppy Disk Drives

—¢

Mains supply

Composite
Monitor

—

Floppy Disk Drives

=) =y

Recorder

Connection Diagrams and Switches

©OoNOOHWN=

Power ON/OFF Switch.

Power Adaptor Socket (For LASER 350/500)

Main Power Socket (For LASER 700 only)
Composite Monitor Output Socket.

TV Output Socket.

Cassette Interface Jack.

Power Indicator light.

Color Defeat Switch (For NTSC & PAL versions only)
Expansion Bus (P 1)

Expansion Bus (P2) (For LASER 350/500)

Printer Connector (For LASER 700 only)

Floppy Disk Drive Connector Sockets (For LASER 700 only)
Keyboard.

Channel Select Switch (For NTSC & PAL versions only)

SETTING UP THE LASER 350/500/700.

IMPORTANT: PLEASE MAKE SURE THAT ALL COMPUTER

(1)

(3)

(4)

(5)

(6)

PERIPHERALS ARE TURNED OFF BEFORE YOU
MAKE ANY CONNECTIONS.

Connect the composite monitor cable from composite video out-
put socket of your computer to your composite color/green
monitor. If you are using a domestic TV as a display, you should
connect the TV cable from the TV output socket of your com-
puter to the TV antenna outlet of your TV set.

Connect the cassette cable from the cassette socket of your com-
puter to your data cassette recorder/audio cassette player. On the
recorder side of the cable, the black colored plug should be in-
serted into the Mic input while the red colored plug should be
inserted into the Ear output. If you are not using a cassette for
storage, then you may skip this step.

If you decide to use any expansion modules such as Printer
Interface, Joystick Interface or Floppy Disk Drive Interface, just
remove the cover from the operate and insert the interface
module. (BE SURE TO TURN OFF THE POWER BEFORE
INSERTING OR REMOVING ANY EXPANSION MODULE)

Connect the power cable (For LASER 700 only) to your mains
supply. If you are using LASER 500 or LASER 350, you need to
connect the DC power adaptor plug to your computer’s DC
power input and connect the other end of the power adaptor to
your mains supply.

Double check that everything is properly installed before turning
on the POWER ON/OFF SWITCH of your computer.

The indicator light should glow as you turn on power to your
computer. The following message should be displayed on your
TV/monitor screen:

VIDEO TECHNOLOGY
BASIC V3.0
READY

If this display does not appear, TURN OFF THE POWER
IMMEDIATELY.
Double check everything and try again. If it still don’t work,
follow the instructions in the following “Trouble Shooting
Checklist”.

8

TROUBLE SHOOTING CHECKLIST

SYMPTOM

1

No Indicator Light — The Mains supply not turned on or badly
connected.
— The Power Adaptor not properly connected
or badly contacted.
— Power switch not turned on.
— The power plug badly connected.

2. No Screen Display — Aerial cord not properly connected or badly

contacted.

— The TV set not properly turned.

— Misconnection between the TV set and the
Monitor socket.

— Misconnection between the Monitor and TV
socket,

3. Screen Display without the READY message

— Improper set-up procedure. Switch off the
power for a while and switch on again.

— For LASER 700 user without disk drive, the

RESET key need to be pressed to enter
BASIC after power up.

4. Abnormal Performance

— Improper set-up procedure. Switch off the
power for a while and switch on again.

5. Cassette Loading and Saving Not Working
— Cassette Interface Cord not properly
connected or badly contacted.
— The tone and volume level of the cassette
recorder not set at proper range.(Please
refer to Basic Programming Manual)

If none of the above work, please contact your nearest Dealer.

HOW TO CARE FOR YOUR COMPUTER

1.

Do not attempt to probe the inside of your computer. Dangerous
high voltage is used inside. Contact your dealer for service if
necessary.

Keep the computer main unit, expansion modules and TV/monitor
display away from excessive heat, humidity, dust and any form of
moisture.

Do not cover the ventilation holes on the top and bottom of the
cabinet during operation. Otherwise, excessive heat might develop
inside your computer.

Do not use thinner or any oil or petroleum based cleaner for the
cabinet or the keyboard. It may damage the surface finish. Use
only mild soap or detergent solution for cleaning. Ensure that the
POWER is switched off during cleaning.

Do not drop the main unit. Handle it with care.

10

DIFFERENCES BETWEEN LASER 350/LASER 500/LASER 700

This manual is written for the three models LASER 350, LASER. 500
and LASER 700. These three models share the same 32K bytes resident
ROM (Read-Only-Memory) which contains an Extended Microsoft
BASIC Interpreter.

Software features and hardware circuitry are basically the same for all
threee models except in the following areas:

(1) Keyboard and Cabinet.
The cabinet of LASER 500 and LASER 700 are the same size,
whereas the LASER 350 is slightly smaller.

All three models are equipped with sculptured, typewritter style,
alphanumeric, full stroke keyboard. In addition, the LASER 500
and the LASER 700 have CURSOR KEYS, RESET, TAB,
GRAPH, CAP LOCK, BACK SPACE, ESCAPE and Editing keys
along with ten Programmable Function Keys.

Most of these special key functions can be generated on the
LASER 350 by CONTROL key combinations.

(2) Built-in RAM (RANDOM ACCESS MEMORY)
The LASER 350 comes with 16K Bytes of on board RAM,

expandable to 144K Bytes RAM with optional RAM Expand-
ion Modules.

The LASER 500 comes with 64K Bytes of on board RAM with
optional RAM Expansion Modules.

In the LASER 700, two versions of built-in RAM are offered; the
64K Byte version and 128K Byte version. Both are expandable to
144K Byte with optional RAM Expansion Modules.

(3) Graphics Modes
The BASIC Interpreter of the three models, as well as the hard-
ware circuitry on-board, is capable of supporting two text modes
(40 column and 80 column Text) and six graphics modes (GRO,
GR1, GR2, GR3, GR4 and GRS5).

However, some of the graphic modes require large amount of

display memory (RAM). So you may not be able to invoke some
graphics modes if your model do not possess enough memory.

11

(4)

(5)

(6)

Graphics modes GR3, GR4, GR5 are not available to LASER 350
users, unless they have installed an optional 64K RAM Expansion
Module. Both 40 column and 80 column text modes are available
to LASER 350 users, however, even without any RAM Expans-
on.

All graphics modes and text modes are avialable to LASER 500/
LASER 700 users, who have at least 64K RAM on-board.

Power Supply
The LASER 350 and the LASER 500 comes with an external
Power Adaptor Module as standarad accessory.

LASER 700 has a power supbly built into the main unit.

Printer Interface.
The LASER 700 has a built-in Printer Interface for Centronics
Printers.

For the LASER 350 and the LASER 500, optional Printer Inter-
face modules are available.

Floppy Disk Drive Interface

The LASER 700 has a built-in Floppy Disk Drive Interface which
supports two 5%’ Floppy Disk Drives. There are provisions for
two Drive connectors on the back panel of the LASER 700.

For the LASER 350 and the LASER 500, optional Floppy Disk
Drive Interface Modules are available, which support two 5%"
Floppy Disk Drives.

BASIC statements and programs are compatible on all three models
provided that memory requirements do not exceed the limits available.
For instance, a program on a LASER 500, which utilizes graphics mode
GRS5, will not be able to RUN on a LASER 350 unless a 64K RAM
Expansion Module is installed on the LASER 350. But other than this
memory limitation, all program are 100% compatible. ’

12

SPECIFICATIONS
LASER 350

CPU

Built-in ROM
Built-in RAM

RAM Expandable to
Built-in text modes

Built-in graphics modes

Z80A Running at 3.7MHz

32K Bytes Extended Microsoft BASIC
16K Bytes

144K Bytes (optional expansion module)
40 columns X 24 rows 16 colors

80 columns X 24 rows 2 out of 16 colors
upper/lower case letters

320H X 192V 2 out of 16 colors

160H X 192V 16 colors

160H X 96V 16 colors

*640H X 192V 2 out of 16 colors
“320H X 192V 16 colors

160 X 192V 16 colors

*64K RAM Expandion Module required

Operating system supported : DOS (disk drive required)

Keyboard

Other Built-in Features

Expansion (options)

CP/M (disk drive required 64K RAM
Expansion Required)

:49 keys Sculptured, Typewriter Style,

Full-stroke Keyboard with Space Bar,
Programmable Beep/No Beep Key Entry,
All keys Auto-Repeat.

: Programmable Foreground/Background/

Backdrop color, Full On-screen Editing,
Single key command entry, Graphics
Character, Single Channel Sound Output,
Cassette Interface at 600 Baud, Com-
posite Video Output, RF Output for
Domestic TV, DC Power Adaptor.

: 64K/128K RAM Memory Expansion

Module, Centronics Printer Interface,
Joystick Interface, Floppy Disk Drive
Interface. Light Pen Interface, Fast
Cassette Interface, RS232 Interface,
Chinese Card. AD/DA Interface.

13

LASER 500

CPU : Z80A Running at 3.7MHz

Built-in ROM : 32K Bytes Extended Microsoft BASIC
Built-in RAM : 64K Bytes

RAM Expandable to : 144K Bytes (optional expansion module)
Built-in text modes : 40 columns X 24 rows 16 colors

80 columns X 24 rows 2 out of 16 colors
upper/lower case letters
Built-in graphics modes : 320H X 192V 2 out of 16 colors
160H X 192V 16 colors
160H X 96V 16 colors
640H X 192V 2 out of 16 colors
320H X 192V 16 colors
160H X 192V 16 colors
Operating System Supported : DOS (disk drive required)
CP/M (disk drive required)

Keyboard :77 keys Sculptured, Typewritter Style, Full-stroke key-
board with Space Bar, Cursor Keys, Screen Editing Keys,
Tab, Cap Lock, Reset and 10 Programmable Function
Keys, Programmable Beep/No Beep Key Entry, All Keys

Auto-Repeat.
Other Built-in Features : Programmable Foreground/Background/

Backdrop color, Single Key Command Entry,
Graphics Characters, Single Channel Sound
Output, Cassette Interface at 600 Baud, Com-
posite Video Output, RF Qutput for Domestic

TV, DC Power Adaptor.

Expansion (Options) :64K/128K RAM Memory Expansion Module,
Centronics Printer Interface, Joystick Interface,
Light Pen Interface, Fast Cassette Interface,
RS232 Interface, AD/DA Interface, Chinese

Card, Floppy Disk Drive Interface.

14

LASER 700

CPU
Built-in ROM

Built-in RAM
RAM Expandable to

Built-in text modes

Built-in graphics modes

Operating System Supported

Keyboard

Power Supply

Printer Interface
Floppy Disk Interface

Other Built-in Features

Expansion (options)

Z80A Running at 3.7MHz

32K Bytes Extended Microsoft

BASIC

64K/128K Bytes

144K Bytes (optional expansion

module)

40 columns X 24 rows 16 colors

80 columns X 24 rows 2 out of 16 .
colors

upper/lower case letters

320H X 192V 2 out of 16 colors

160H X 192V 16 colors
160H X'96V 16 colors
640H X 192V 2 out of 16 colors
320H X 192V 16 colors
160H X 192V 16 colors

DOS (disk drive required)

CP/M (disk drive required)

77 keys Sculptured, Typewritter
Style, Full-stroke, Keyboard with
Space Bar, Cursor Keys, Tab, Screen
Editing Keys, Cap Lock, Reset and
10 Programmable Function Keys,
Programmable Beep/No Beep Key
Entry, All Keys Auto-Repeat.
Built-in Power Supply Unit for Main
Unit and Floppy Disk Drive

Built-in Centronics Printer Interface
Built-in Floppy Disk Interface for
two external 5%’ Floppy Disk Drives
Programmable Foreground/Back-
ground/Backdrop color, Full on-
screen Editing, Single Key Command
Entry, Graphics Characters, Single
Channel Sound Output, Cassette .
Interface at 600 Baud, Composite
Video Output, RF Output for
Domestic TV, RGB Monitor Inter-
face

64K RAM Memory Expansion
Module, Joystick Interface, Light
Pen Interface, RS232 Interface,
Chinese Card

15

16

PART IIL

BASIC PROGRAMMING
MANUAL

17

INTRODUCTION

This part of the manual is intended for people who want to learn to
program in BASIC on the Color Computer. With a little time and effort
you will very soon discover that there is nothing very difficult about
learning how to program your computer. You will be introduced to the
fundamentals of BASIC and to the procedures of programming. Things
are explained one at a time and step by step. All you have to do is to
start at the beginning and make sure you try everything as it comes
up. Take your time. Understand one step befoe going to the next.

The key to success is to try everything. It is not enough to read about
it. You must do it. You don‘t learn to play the piano, type or swim by
reading a book. You learn by doing. Don’t worry about making mis-
take, just correct the mistake and continue. The computer doesn’t
worry about it, why should you? There is nothing that can be done
from the keyboard that can damage your computer. Cautions are in-
cluded in the text when statements that might DESTROY data files
are introduced. Everywhere else, feel free to try things out with your
computer at every stage of learning.

In general, you should follow the SEQUENCE of presentation given in
the text. However, Chapter 17 which discusses the use of tape storage
may be read at anytime when you wish to save a program on the
cassette tape. While this manual is written for one who wishes to learn
to program in BASIC on this computer, it can also serve as a general
introduction to programming in BASIC on any system. Just remember
that the BASIC language has many forms. There are often slight
differences between one implementation of BASIC and another.

Finally, this manual will not only help you to understand BASIC but
it will also help you to understand the fundamentals of computer pro-

gramming in general.

Have fun with your color computer!

18

19

CHAPTER 1
THE COMPUTER

@ What is a computer?

@ What makes up a computer
@ What is a program?

@ Computer languages

@ BASIC

20

WHAT IS A COMPUTER? . i
A computer is a device which performs various operations based on mi
structions given by the person who uses it. The computer cannot tel
the user how to solve a problem. It has to be told wh;'st to do. The com-
puter cannot think, Yet it is a very effective tool in the hands of a
competent and experienced user.

A computer system consists of a number of machines or devices wt‘mere
operations are coordinated by a central control unit. These machl‘nes
when working together are able to perform simple logical and arith-
metic processes such as comparing two numbers. They can also read
in information, store this information and give out results in a form
understandable by us.

WHAT MAKES UP A COMPUTER SYSTEM?

Generally a computer system consists of the following units:

i)

i)

iii)

iv)

v)

Central Processor Unit (CPU)

This can be considered the brain of the computer system. It per-
forms operations specified in the instructions, such as arithmetic
and logical operations.

Memory Unit — Information and instructions given by the user or
generated by the computer are stored here. This unit is inside the
computer. The CPU gets information from it directly.

Mass Storage Unit — This unit is outside the computer. It stores
instructions and information given by the user or generated by the
computer. The tape storage unit and the floppy disk units are
examples of mass storage units. Information stored in these units
has to be transferred to the internal memory unit before the CPU
can process it.

Input Device — As the name suggests this allows the user to enter
instructions or information to the computer. The keyboard is an
example of an input device.

Output Device — This receives information or results sent from the
computer. Examples are the printer and the TV screen.

The input and output devices together act as a two-way communication
channel between the computer user and the computer system.

Although computer systems vary in size, all practical computer systems
require the above mentioned units.

21

TV or
Video Monitor

computer

output device

ASCII
KEYBOARD

¥ 4

CPU

MASS STORAGE
DISK

memory unit

input device

PRINTER

output device

MASS storage device

CASSETTE
TAPE UNIT

MASS storge device

Configuration of a Computer System in general

22

WHAT IS A PROGRAM?

A program is a set of instructions. The process of specifying a set of
instructions for a computer is called programming. The individual
preparing a program is called a programmer. The programmer feeds in
or ‘inputs’ a series of instructions (program) which tells the computer
the steps to take to complete the task required of it.

COMPUTER LANGUAGES

There are two steps involved in preparing a program for a computer.
First the programmer must know what instructions to specify and the
order in which to specify them. Second, he must be able to com-
municate his instructions to the computer. Communication is accom-
plished by means of a programming ‘language’ which the programmer
writes, and the computer ‘reads’.

There are many programming languages in use today. Some are design-
ed for very specialised applications. Others are designed for more
general use. BASIC is a language in the latter category.

BASIC

BASIC, an acronym of Beginners’ All-Purpose Symbolic Instruction
Code, is a powerful programming language. BASIC has a simple English
vocabulary, few grammatical rules and it resembles ordinary mathe-
matical notation. To instruct your computer you must know BASIC. It
will be introduced gradually and explained at each step.

Programs written in BASIC are translated by a language translation
program into a language that the central processor unit understands.
This language translation program is called the BASIC Interpreter, and
is contained in the main console.

The BASIC described in this manual is common for the three color
computers LASER 350/500/700. Most of the BASIC commands and
functions are identical in the three different models except that some
graphic mode commands are not available for the model with less
memory. For details please refer to the chapter on graphic commands.

23

24

CHAPTER 2

HOW TO USE YOUR COLOR
COMPUTER

To start

How to operate the keyboard
The PRINT Command
SYNTAX ERRORS
EDITING

INSERT

A look ahead

25

TO START

When you have set up your computer and switched it on, your TV
screen should look like this: ’

VIDEO TECHNOLOGY
BASIC V3.0
READY

READY is a prompt message telling you that the computer is waiting
and, as the word suggests, is ready to receive your instructions. The
flashing square, the CURSOR, tells you exactly where you are typing
on the screen. That is, where any information you feed in from the key-

board will appear on the screen.

Your compuer has 2 different character display modes. One is the 40
columns X 24 rows characters display, as you can see on the screen
above. The other is the 80 column X 24 rows characters display.

There are some “‘tricks’” to select 40 or 80 column display at power up.
To try it now, switch off your color computer and then keep holding
the key when you switch on the computer again. Then you
can see the smaller character display mode on the screen.

Of course, you can use BASIC commands to switch between 40 and 80
column display. You will come to more detail on these so called

“TEXT’ modes in later chapters.

HOW TO OPERATE THE KEYBOARD

The keyboard layout of the LASER 350 and LASER 500/700 are quite
different from each other. Some keys found on LASER 500 are not
found on the LASER 350. However, their operations are similar. The
following pages describes the keyboard of all three models in general.
You may skip those parts not avialable on your model. Please note that
some keys not found on LASER 350 keyboard can be replaced by
CONTROL key combinations.

LASER 350 KEYBOARD

BEEEDD
o] B ED 0 0T BT B [D B []
L I

LASER 500/700 KEYBOARD

[wfefelelalalnalafm} inl-
LR EELLELELELELE L Rl (e
E3EE H [T TTTTT T o]
[P T T o]
[0 O O 0 0 0 0 PR

The keyboard layout of LASER 350 and LASER 500/700 are shown
above.

27

You will notice that these keyboard panels resemble a typewriter’s,
except for a number of special keys.

Although each key is labelled with only one, or not greater than 2
symbols, most of the keys are dual-function or even triple function.
That is, different symbols can be obtained, or different functions can
be performed by pressing that key alone, pressing the key with the

SHIFT] key, or pressing the key with the [CTRL]| key.

To illustrate this, press the key m alone. The number ‘1" will be
generated on the screen. If you press the same key lIJ while holding
the key down, a symbol ““I"” will be generated instead. This
rule applys to all other keys with two different symbols on the keytop.

All keys on the LASER 350/500/700 have auto-repeat feature. If you
press a key and hold it down for about a second, it will repeat itself at
about 10 characters per second until you release it. ’

Here are more detailed descriptions of the special keys.

RETURN

The |RETURN| key implies ““Return control to the computer”. After
hitting this key, the computer will start interpreting whatever you have

typed in before [RETURN] . If the computer does not understand you
at all, it will mildly show its annoyance by giving you an error message.

Hitting [RETURN| has another effect; it performs a ‘carriage return’
on the screen, i.e., it will put the little flashing cursor at the beginning

of the next line down, or it will cause the screen to scroll up if the
display has already reached the bottom of the screen.

SHIFT

On either side of the keyboard there are two keys labelled [SHIFT| .
They perform similar functions as shift keys on an ordinary typewriter.

These |SHIFT| keys do not generate any character when used on their
own. When pressed with another key, a different character code will be

generated. For instance, pressing[SHIFT | and 4 will produce a ‘$’.

CTRL

The [CTRL key, meaning CONTROL, is located right above the
SHIFT| key on the left side of the keyboard. This key does not
generate a keycode of its own, but only alters the codes of other keys.

Some of the keys, when pressed with the |CTRL | key, will generate
a series of codes that corresponds to a BASIC statement or perform
special functions as listed in table:

.28

CTRL|key BASIC statement CTRL| key BASIC statement

pressed with code generated pressed with code generated
& A
7 AUTO
N S
8 l STEP
(D
9 [DIM
) F
0] GOSUB
_ \ G GOTO
i ! H CLS
Q J REM
FOR
W K RUN
TO
E L LIST
NEXT
7
R
RETURN PEEK (
X
i THEN POKE
Y Vv
ELSE LPRINT
U IF B LLIST
N
I INPUT NEW
0 LET b DELETE
P PRINT 29

|
! CAP LOCK Toggling
@
2 TAB
#
3 Clear to End of Line
$
4 Home Cursor
%
5 Clear Screen
A
6 Beep Buzzer
; Insert
Rubout
Graphic Character Enable
2 Break BASIC Program excution
<
) —<=— Cursor |eft
” = Cursor right
? 1 Cursor up
/
: ‘ Cursor down
SPACE BAR
CTRL|key
pressed with Special Function Performed

NOTE: When a key is pressed together with the |[SHIFT key

and the [CTRL] key,the function performed or key
code generated is the same as that by pressing that

key with the [SHIFT] key only.
30

ESC (LASER 500/700 only)

Pressing the key on the left of the keyboard changes the meaning
of all keys that you press thereafter (known as ESCAPE SEQUENCE).

For instance, pressing after you have pressed the key will
set the character to be displayed in inverse. That is, the Foreground/
Background color for the text will be reversed.

Besides typing directly from the keyboard, you may also invoke
these Escape Sequence by means of the PRINT command.

Example: | PRINT CHR$(27); CHR$(66)

The screen is set to inverse display as mentioned above.

For more details of these ESCAPE SEQUENCES, Please refer to
Appendix—D.

CAP LOCK (LASER 500/700 only)

From the keyboard, you can enter either upper or lower case letters.
The key, with a small indicating light on it, is like an
electronic locking switch. It toggles between capital and lower case
letter entry. When your LASER 500/700 is first turned on you may

notice that the red light on the [CAP LOCK] key is on, indicating that

all letters typed will be in capital.

Pressing the key once will turn off the light and changes the letters all
to lower case. Pressing it once again will return to all capital letters.

LASER 350 users should note that pressing the [II key while holding

the [CTRL| key down has same function as the [CAP LOCK key on
the LASER 500/700.

31

GRAPH (LASER 500/700 only)

Your computer is designed to display characters as well as some prede-
fined graphic symbols in TEXT mode. The key must be
pressed to use these ‘“Graphic Characters”’.

Hitting the [GRAPH]| key once puts you into Graphic Charater Entry
Mode. You will stay in this mode and keep on entering Graphic

Characters until you press the [GRAPH] key again, or the |RETURN

key.

For instance, the graphic symbol * ’ " is entered by pressing [GRAPH]|,
then pressing the [1 | key.

For a more detailed description of these graphic characters please refer
to Appendix — G.

LASER 350 users should note that pressing the E] key while holding

the [CTRL| key down has the same effect as the |GRAPH key on
LASER 500/700.

TAB (LASER 500/700 only)

The TAB key is located above the [CTRL key on the left side of the
keyboard. Hitting the key will move the cursor to the next
pre-set TAB column to the right of the cursor.

The pre-set TAB COLUMNS are 9, 17, 25, 33 in 40 column display.
While in 80 column display, they are 9, 17, 25, 33, 41,49, 57, 65, 73.
So, if the cursor is positioned in column 20, for instance, pressing

will move it to column 25.

LASER 350 users should note that pressing 'fhe @key while holding
the [CTRL| key down has the same function as the key on
LASER 500/700.

32

BS (LASER 500/700 only)

means ““Back Space”. Pressing this key will cause the cursor move
one place to the left, without erasing anything. You may use this key
to go back and retype the characters that you want to alter.

You will soon recognize that the key is functionally equivalent
to the left arrow key [—] on the LASER 500/700 keyboard.

LASER 350 users should note that pressing the key while holding
the [CTRL| key down has same function as pressing the , or
[=] key on LASER 500/700.

CURSOR KEYS: [!] [1]

(LASER 500/700 only)

These CURSOR KEYS (or ARROW KEYS) located at the lower right-

hand corner, perform cursor movements in the direction their arrows
indicate.

These cursor keys are used for on-screen editing supported by the built-
in BASIC V3.0, to edit your programs.

A more detailed description of BASIC Program Editing can be obtained
in later Chapters of this manual.

LASER 350 users should note that pressing the ; ; or the
SPACE BAR

together with the [CTRL| key has a similar effect to
pressing the [—] , [=], [1], [7] keys on the LASER 500/700.

33

CLS

DEL
SCREEN EDITING KEYS: [INS] LiNg| |HOME

(LASER 500/700 only)

These keys, located at the right side of the keyboard, are grouped as
Screen Editing Keys because they allow the user to perform editing
functions by pressing one single key.

@ This key stands for ““Inserting’’ characters, while the key
stands for ‘’Deleting’’ characters.

DEL
LINE| actually menas“Delete To End of the Line”. This key allows

quick deleting of the characters on the rest of the line.

CLS
HOME]| is a dual function key. Pressing it alone will bring the cursor to
its “HOME" position, ie., at the top left hand corner of the screen. The
remaining parts of the screen is not changed. Pressing it with the
key will clear the Text Screen and place the cursor 1o its
“"HOME" position.

FUNCTION KEYS [F1] [F3]
F10

(LASER 500/700 only)

The function keys, located on the top row of the keyboard, allow the
user to enter a BASIC statement, a line of characters or a special
function with one single keystroke.

The meaning of each Function key is defined at power up as th_eir
default functions. However, users are allowed to redefine the meaning
of these function keys with the BASIC command—KEY.

For details of the default Function key configurations and how to re-
define them, please refer to later Chapters and to the Appendix.

RESET (LASER 500/700 only)

Pressing the RESET key performs a very special action on the whole
system. It does not generate any key code but instead, it forces an}/
program in execution to stop. Usually you will be returned to BASIC’,
as shown by the prompt message “READY".

Normally you should not touch this key except when you get locked
up in your program which goes to an endless loop somehow.

34

THE PRINT COMMAND

You instruct your computer using the language of BASIC. The com-
puter can obey at once or it can store the instructions and run them
later as a program. Let us now instruct the computer to act at once.
To do this, we need our first word from the BASIC language: PRINT

OO OOt L) e

L JOJC JCE 0 L o]
L e e e e
ﬁﬁ(?[JLC JLJC}TT[——T

Note: In looking at the operation of PRINT as our first BASIC com-
mand, we will be using the key near the top right-hand
corner of the keyboard. This key is used in BASIC to let the computer
know when we have finished feeding in a command, so that it can go
ahead and either carry out the command, or store it away in its

memory to run later. Do not confuse this |RETURN]| key with the
BASIC command [RETURN] which we will meet later.

When using PRINT or any other statements you can fype out each
letter, e.g. P, R, I, N, T or you can just press the appropriate combin-
ation of keys, in this case and [P] (CTRL-P) to get the key-
word. Try it out on your computer.

Note: (CTRL-P) means that you press the |CTRL| and IEI , keys
simultaneously.

Whichever way you type in PRINT the computer knows that it has to

print what follows on the screen. For simplicity, you can just type ‘?’
to represent the command PRINT.

35

For example, type PRINT 6-3 and the screen should look like this.

PRINT 6-:3 W

Notice that when you press a key there is a (BEEP) sound. This tells
you that the key has registered and is helpful in that you do not

constantly have to check the screen.
Moreover, if you keep holding a key (or keys), the same character (or

characters) is sent to the computer until you leave that key (or keys).

Now press [RETURN] and your screen should look like this.

PRINT 6-3
3

READY

By pressing the you have told the computer that the

message is completed and you want the line executed. Remember then

to press |[RETURN | after each completed message.

36

SYNTAX ERRORS

You may find the following appearing on your screen.

?SYNTAX ERROR
&

This means SYNTAX ERROR. A syntax error is usually due to in-
correct punctuation or a typing error.

Suppose you type in PRIMT 6-3 and then press the {RETURN| key

your screen will look like this.

PRIMT 6-3 [RETURN

?SYNTAX ERROR

READY
25}

In addition to SYNTAX error there are a number of other errors that
may occur. The various error types are listed in an appendix. These
error messages tell you the reasons why your programs go wrong. If you
are familiar with these messages, you can make use of them to correct
your programs quickly and successfully.

37

EDITING

Lzr\]/o:xs:atl;e a ng;t;ke while you are entering a program statement, you
o e -L key and the appropriate keys to move the
R back to the wrong entry and make a correction.

For example:

PRIMT BB

t move the CURSOR over ‘M’ by pressing E , or ,or [CTRL
-<

You will observe that the letter M is changed to flashing between ‘M’
and the “Inversed M”’. Now press ‘N’ followed by ‘T’ to get ‘PRINT".

The CURSOR automatically move to the right of ‘T",

More generally, you can make corrections to your program lines using
any cursor movement keys, Insert key, Delete key, Deleteto End of
Line key, or the BASIC command DELETE. LASER 350 users might

use the equivalent CONTROL key combinations.

Look at another example. If you have typed in a line, then the
CURSOR is at the right side of the screen. Let us suppose you have

made a mistake at the beginning of the line. You want to delete this
line. Press E] (, or , or |[CTRL) Keep pressed until the
CURSOR has moved back to where you want it, in this case, the

character ‘H’ . Then press the , (or [CTRL] [M]) and keep

pressed until the line is erased.

38

HELLOJOHN W

The above operation could have been done much simpler by moving the
CURSOR to the letter ‘H" on the word “HELLQO", then press DEL

LINE (or |[CTRL) for ‘clear to End of Line’.)
Suppose that after having HELLO JOHN you decide to change the
name. However this time suppose the CURSOR is on a lower line. Well

all you do is to press [! | (or [2]).
Each time you press III() the CURSOR will move up one

line. Once you have reached the line you wish to edit, you can just
carry on the same way as described in the example above.

To familiarize yourself with editing you need to experiment with it.
Here, as elsewhere, the old adage holds true: Practice Makes Perfect.

39

INSERT

This allows you to insert characters starting at the position the
CURSOR is in without changing what is already there. For example:
you wish to insert S in JOHNTON between the N and the T.

Well you move the CURSOR to the T. Press [INS] and the letters
‘TON’ would be shifted by 1 position to the right leaving one space.
Then type S. Your display should now look like this:

JOHNS[T]ON
T

Blanking Cursor

Be sure to press [RETURN| after you finish editing. This will update

the current line where the CURSOR is located. This is particularly
important with numbered program lines. If you forget to do so, the
original line is still kept in the program.

CLS

If you want to clear the whole text screen, press |SHIFT H%L:E
(or [CTRL] [5]).

This will clear the screen, ‘HOME’ the cursor to the top left-hand
position, but it will not clear the memory. The program will only be

wiped from memory if you press NEW (or |[CTRL E). It will also be
wiped out if you disconnect the power from the computer.

40

A LOOK AHEAD
At this stage you are probably very eager to jump ahead and see what
your computer is capable of. So using your newly acquired ability try

typing in these programs.

Be careful to type in everything. Do not worry about understanding the
commands at the moment.

1) To get all the characters on the screen type this

Example

10 TEXT 40 : CLS

20 FOR | =33 to 159 STEP 6
30 FOR J=0TO 5 [RETURN]

40 PRINT TAB (7*J); CHR$(1+J);
50 NEXT J

60 NEXT I

70 GOTO 70 [RETURN

RUN [RETURN]

To stop this program, press

2) To see some of the color possibilities try this one.

Example:

10 TEXT40:GR1:D=0
20 FORC=0TO 15
30 COLORC,0,0
40 FORY=0TO 11
50 FORX=0TO 159
60 SET (X,Y +D) [RETURN]
70 NEXT X
80 NEXTY
90 D=D+12 [RETURN]
100 NEXTC RETURN]
110 GOTO 110
RUN

To stop this program, press |[CTRL
41

42

CHAPTER 3

USING YOUR COLOR COMPUTER
AS A SIMPLE CALCULATOR

@ Simple Instructions
@ Order of Numeric Operations
@ Brackets.

43

SIMPLE INSTRUCTIONS

To use the computer as a calculator simply type PRINT followed by
the problem and then press . Your computer, of course,
cannot only add, using +, but it can also subtract using —, multiply
using®, divide using/and raise one number to the power of another
using t ,+,—, ¥, /, t are called operations, and they operate on
numbers called operands.

Example: PRINT 3 1 2 RETURN

and the answer 9 will appear.

Module arithmetic is denoted by MOD.
It gives the integer value that is the remainder of an integer division.

For instance: 10.4 MOD 4 =2
25.68 MOD 6.99=5

Example: PRINT 10.4 MOD 4
2

ORDER OF NUMERIC OPERATIONS

When operations are combined, care must be taken to note the order in
which the computer carries out the operations. The order is as follows:

1) Minus sign — used to indicate negative numbers.

2) Exponentiation starting at the left and moving right.

3) Multiplication and division (which are given the same order of
precedence). Here too the computer moves from left to right.

4) Subtraction and addition moving from left to right.

A)
Example: PRINT3 121212 RETURN
6561
This is done by squaring 3 to get 9. Then squaring 9 to
get 81, and then squaring 81 to get 6561.
B)
Example: PRINT6 *2+3 |RETURN

Here the computer first multiplies 6 X 2 and then adds 3.

44

C).

Example: PRINT6 +3 *4+6/3 |RETURN
20

First the computer carries out the multiplication and
division and then adds to give 6 + 12 + 2.

BRACKETS

All operations within brackets will be carried out first before the other
operations.

Example: PRINT 18/(3 + 3) RETURN
3

Where brackets are placed within brackets the innermost brackets are
calculated first.

Example:

PRINT 20/(1 + (3 t 2))

2

45

46

CHAPTER 4
CONSTANTS AND VARIABLES

@ Constants

@ Variables

e LET

@ Semi-colons and commas
@ Colons

47

CONSTANTS

In the previous chapters we have been using constants. A constant is, of
course, something which does not change and can be either positive or
negative. The number 6.32 is a constant. Moving onto 6.33 just gives a
different constant.

: " 38 38
The range of a number in the computeris —100 < X <10
The lowest positive number is 1038

VARIABLES

A variable, as you might surmise, is something which changes. In Y = X
+ 3 both X and Y are variables as they have many possible values.
Variable names may be any length and up to 40 characters are signi-
ficant. The first character must be a letter. For example, A, AB are
valid names of variable.

A variable name cannot be or include any of the command words like
LET or PRINT. There are totally 3 types of variables namely:

a) real : — can have decimal value, e.g. A = 3.5, or A = 1E3.
b) integer : — cannot have decimal value, e.g. A% = 3.

c) 'string : —contain a string, e.g. A$ = “ABCD"".

LET

The command LET can be used to assign a value to a variable. If a
variable is not assigned a value it is assumed to be equal to zero. The
variable will keep its assigned value until another LET, READ or an
INPUT command is used to change the value.

Example: LETA=7 [RETURN
LETB=9 RETURN
PRINT A + B [RETURN
16

In BASIC the = sign does not mean the same as it usually does. Here it
tells the computer to give the variable on the left hand side the same
value as the right hand side.

48

The left hand side of the statement must always be a variable. Have a
look at the next example.

Example: LETA=2
LETB=3
LETC=20
LETA=2+A
LETD=3+D [RETURN]|

PRINT A, B; C; D
4 3 20 3

In the fourth line we see that A is assigned a new value of 2 plus the old
value of A, which was also 2, giving a total of 4.

In the fifth line we see that D is given the value 3 + D, as zero is the
value given to any variable without an assigned value. However, it is a
good practice to predefine all variables.

Note that in your computer it is not strictly necessary to use LET to
assign a value to variable, and A = 7 will carry out the same function as
LETA=7.

SEMI-COLONS, COMMAS

If more than one item is included in a PRINT statement the items
should be separated by either a (,) or (;). Note the use of the semi-
colon in the PRINT statement above. This causes the results to be
printed immediately after each other with a space is left for the sign of
that number. When we use the semi-colon with string there is no space.
Typing one or more spaces between expressions has the same effect as
typing a semi-colon.

A comma causes the result to be printed as follows. Think of the lines
on screen divided into print zones of 14 spaces each. A comma causes
the next value to be printed at the beginning of the next zone.

49

COLONS

If you have more than one statement on a line you must separate them
by using colons.

Example:

RUN [RETURN

710 FOR I=1TO5:PRINT I;: NEXT |RETURN
7 2 3 4 5

LISTS OF PRINT STATEMENTS

Example:

10 PRINT 4
20 PRINT6
30 PRINT8
RUN

Your screen will show

Example:

4
6
8

SEMI COLONS AT THE END OF PRINT STATEMENTS

Example:

10 PRINT 4;
20 PRINT 5;
30 PRINT 6;
RUN

Your screen will show

Example:

4 b5 6

In general, a semi-colon placed at the end of a PRINT statement tells
the computer not to go to a new line after printing.

8

CHAPTER 5

INTRODUCTION TO BASIC
PROGRAMMING

@ Immediate mode/Deferred execution
e REM

e INPUT

@ NEW

@ RUN

® LIST

@ Pause in listing

@® Deletealine

51

PROGRAMMING

OK, so now let’s try some simple programming. In the last few chapters
we have been dealing with ““immediate execution’ — with the computer
obeying immediately. We now want the computer to store statements
so that they can be executed later on — ‘“deferred execution”’.

Have a look at this program.

Example: 10 REM RAISE TO THE POWER OF 3 |RETURN

20 INPUT A |RETURN
30 PRINTA;At3 [RETURN

Notice that each line begins with a number. These numbers tell the
computer not to obey immediately but to store the lines away. The line
number governs the order in which the line will appear on the screen.
It is useful to write the numbers in tens as new lines can be later fitted
into any part of the program by giving them a value of say 15 or 25.
The range of possible line numbers is from @ to 656529.

REM

The REM in line 10 is simply there to remind you later on of the
purpose of the program. The computer will ignore any line which starts
with REM. However REM lines use memory space so if you are short of
space you can delete REM lines.

INPUT

The INPUT in line 20 asks you to assign a value to the variable A. When
you run this program, a question mark ‘‘?’* will display. The computer
will wait until you type ina value arrd give this value to the variable A.

NEW

So how do we feed the program into the computer? Well first feed in

the NEW command and press |RETURN| . This will wipe out any old
programs and variables. Remember the NEW command clears the
memory of the computer.

Now type

Example: | 7@ REM RAISE TO THE POWER OF 3 [RETURN
20 INPUT A [RETURN
30 PRINTA;At3 [RETURN

52

You can now run the program by typing RUN and press .
The sign ‘?" will now appear under RUN . This is the result of the
INPUT statement and the computer is now waiting for you to give a
value to the variable A. This value should be typed next to ‘?’.

Let’s type 2 and [RETURN

The screen will look like this.

Example:| 10 REM RAISE TO THE POWER OF 3.
20 INPUT A

30 PRINTA;At 3

RUN

? 2 |RETURN
2 8

RUN

By typing RUN and pressing [RETURN| the whole of your stored
program will be executed, starting at the line with the smallest line
number. If however you press RUN and then a line number before

RETURN]| , the program will be executed starting from that line.

Have a look at this program

Example: 10 INPUT A, B |RETURN
20 PRINT A+ B |[RETURN
RUN RETURN

What will happen here is, you will get a ‘?’ to ask for the values of A
and B. You have to type in the value of A, followed by a comma, and
then the value of B. So carry on with the program above

Example: 10 INPUT A, B RETURN
20 PRINT A +B RETURN
RUN RETURN

73,6 RETURN
9

The INPUT command requires you to type in the numbers in exactly
the same sequence as listed on the INPUT line, with each number

seperated by a comma.
53

LIST

If you want the whole program to be displayed in an ascending line

number order then just type LIST and press [RETURN]| .

Example:

10 INPUT A

20 INPUT B

30 PRINT A;B;C;A+B+C
25 INPUT C

Ex le:
ample LIST [RETURN
10 INPUT A

20 INPUT B
25 INPUT C
30 PRINTA;B,C;A+B+C

If you only want one line to be displayed then type

Example: LL/ST (Line number) RETURN

Example: LIST 20 [RETURN
20 INPUT B

To list part of a program say, lines 20—30, type

Example: LIST 20—30

20 INPUT B

25 INPUT C

30 PRINTA;B;C;A+B+C

If you type LIST — 30 you will get the program listed up to line 30
from the start.

If you type LIST 30 — you will get the program listed from line 30
to the end.

PAUSE IN LISTING

If you have a very long program you might wish to have a look at a’
particular line while it is being listed. To do this just press the |SPACE
bar when you wish the listing program to stop.

Press the same bar again to continue.

DELETE A LINE

To get rid of any program line just type the line number and press

:

Your computer also allows you to perform the above function in
another way.

Just type:
DELETE 40
and the program line will be deleted.

Furthermore, to delete all program lines from 40 to 100 inclusively,
type:

DELETE 40—100

55

CHAPTER 6

COMPUTER PROGRAMMING
REVISITED

@ CCTC
® PAJSE
® CONT
® STOP
® END

e CLEAR

Here are some more commands to help you write more interesting

programs.

GOTO

This command tells the computer to go backwards or forwards to
the line number following the GOTO statement and then to carry on
executing the program from that line number.

Example: 10 INPUT A |
20 PRINT A, At 3 ;

30 GOTO 10 |
RUN |
|

?

If you give the value say 2 to A the computer will return the results 2
and 8. However a question mark will again appear on the screen asking
you to give A another value. This procedure is the result of the GOTO
statement telling the computer not to end at line 30 but to go back to

line 10 and start again.

PAUSE

When you get tired of putting in different values of A you can press

CTRL . The computer will stop the program at the end of the
executing statement and will output on to the screen a message:

BREAK IN 10

It should be noted that the word BREAK is not a command. You can
break any continuous BASIC program by pressing [CTRL ;

Pressing the RESET key on LASER 500/700 served similar purpose.
It will stop any executing program and return you to BASIC command

level.

57

CONT

If however, after stopping the program execution you feel there are still
some values of A you would like to try you can type CONT, and the
computer will start to execute the program once more.

CONT causes a program to continue after stopping in response to
CTRL or STOP, without resetting any variables. It might be
possible to continue execution after an error.

STOP

A useful statement in programming is STOP. This causes the program to
stop at the line printed after the STOP statment and can help you to
examine the results of the variables at various stages in the program. It
is also extremely useful when it comes to locating mistakes (debugging).
A liberal supply of STOP statements throughout a program is therefore
a good idea, until you are sure that it is working properly.

You can restart the program by typing CONT. The program will carry
on from the next line after the STOP.

END

The END statement is used to terminate execution. But unlike the
STOP statement, execution cannot be continued after an END
statement.

Example: 10 INPUT A RETURN
20 IFA>0 THEN PRINT “A IS POSITIVE”:

END [RETURN]
30 IFA<O THEN PRINT “A IS NEGA TIVE”:

END [RETURN
40 PRINT “A IS ZERO” [RETURN
50 END [RETURN

NOTICE the STOP statement will give you the line number when it is
executed. This will not happen with the END statement.

58

CLEAR

The CLEAR statement sets all numeric variables to zero, all strings to

null, and optionally sets the end of user memory and the amount of
stack space.

The format of | CLEAR, M, N |

in which M, N are expressions representing numbers.

The value of M sets the highest memory for use by the BASIC program.

The value of N set aside stack space for BASIC. Default is 512 bytes of
memory.

For LASER 350 without any RAM expansion, the user can increase his
available RAM by typingin:

CLEAR ,&HB7FD

However, no graphic mode can be used after that.

59

60

CHAPTER 7
NUMERIC FUNCTIONS

What is a Function
ABS

SGN

SQR

LOG

EXP

INT

FIX

RND

SIN

COS

TAN

ATN

User defined Functions

61

"WHAT IS A FUNCTION?

A function is a ‘law’ which when applied to a certain value will give a
new value. We call the first value the argument and the new value the
result.

SQR is the square root function. So if we type

Example: PRINT SQR (9) RETURN

we will get the answer 3.

In this example 9 is the argument, SQR is the function and 3 is the
result.

Below we give a list of the numeric functions and a brief explanation.
Any function which we consider to be new to the reader will be
explained in more detail afterwards. The functions will appear later on
in programs so we don’t give a sample program for each one here.

A LIST OF NUMERIC FUNCTIONS

Function What it does
ABS(X) Returns the absolute (positive) value of X
SGN(X) Returns the sign of the argument

X negative returns — 1
X positive returns + 1
X zero returns @
SQR(X) Returns the square root of X. X cannot be negative.
LOG(X) Gives the natural logarithm of X, i.e., the logarithm to
the base e (=2.71828). The value of the argument must
be greater than zero.

EXP(X) Gives you the value eX _ i.e., the natural antilogrithm
of X.

FIX(X) Returns truncated integer part of X.

RND(X) Gives a random number between @ and 1.
The value of X affects the next random number
generated.

SIN(X) The argument of the trigonometrical functions is taken

COS(X) } to be in radians (1 radian = 360/27t = 57.296 degrees).

TAN(X) The range of X is —9999999< X< 9999999.

ATN(X) This gives the result of ARC TANGENT in radians.

62

A FURTHER LOOK AT ABS SGN INT RND
ABS(X)

This gives the absolute (positive) value of the argument. So ABS(—7)=7.

Example: PRINT ABS (7 — 2 *4) |RETURN

1

SGN(X)

This function will give the value of +1 if X is positive, @ if X is zero,
and —1 if X is negative. So SGN (4.3) = 1,SGN (0) = §;SGN(—.276)
=—1.

Example: A=—6 |RETURN
PRINT SGN (A); SGN (A — A) [RETURN

-1 g RETURN

INT(X)

This converts arguments which are not whole into the largest whole
number below the argument. So /NT (5.9) = 5, also INT (—5.9) = —6.
Note that with negative arguments, the absolute value of the result
returned by INT will be greater than that of the argument.

Example: PRINT INT (-6.7) RETURN

-7

RND(X)

This will produce a random number between @ and 1. The same
sequence of random numbers is generated each time the program is
RUN unless the RANDOMIZE command is executed at the program
start.

X < 0 always restarts the same sequence for any X.

X > 0 or X omitted generates the next random number in the same
sequence.

X = 0 repeats the last number generated.

63

Bxample: | 19 FOR/I=1T05
20 PRINT INT (RND * 100),
30 NEXT
RUN
24 30 31 51 5
READY
RUN
24 30 31 57 5
READY

Ti.c nomber displayec arc v ys the same.

RANDOMIZE

RANDOMIZE is not by itself a numeric function. Its purpose is to re-
seed the random number generator, which you may look upon as a
small machine that throws out random numbers as the RND (X)

function informs it to do so.

If the random number generator is not reseeded, the RND function re-
turns the same sequence of random numbers each time the program Is

RUN.

To change the sequence of random numbers every time the program is
RUN, place a RANDOMIZE statement at the beginning of the program.

Example: 5 RANDOMIZE
10 FORI=1T05
20 PRINT INT (RND * 100);
30 NEXT
RUN

21 38 43 13 80
READY
RUN

87 55 43 57 34
READY

Different results are now obtained each time.

USER— DEFINED FUNCTIONS

The BASIC in your computer is equipped with powerful User—Defined
Functions capability. An example of User—Defined Function is:

10 DEF FNAB (X, Y)=X+Y

In this BASIC statement line, the function name AB, with parameters
or arguments X and Y, is defined as the sum of X and Y.

After the function is defined, it can be called as a variable by its name.
For instance, another program line calling the above defined function
might be:

20 T=FNAB/(i,J)

This line would assign the value of variables | plug J to the variable T.

65

CHAPTER

STRING

String variables
String functions
LEN

STRS$

VAL

LEFTS
RIGHTS

MIDS

ASC

CHRS$

OCTS

HEXS$
STRINGS
INKEYS

INSTR

INPUT AS
LINE INPUT AS
INPUTS

STRING COMPARISONS

67

STRINGS

Note: We assume that you are now familiar with the use of the
RETURN key so we will not keep reminding you of it.

A string is any combination of CHARACTERS that is treated as a unit.

String constants must be enclosed in inverted COMMAS.

Example: “HELP"

When using the PRINT statement a semi-colon between strings will not
cause a space to appear between the results. They will appear immedi-
ately next to each other.

STRING VARIABLES

Any letter of the alphabet or letter followed by a number digit can be
used as a string variable but must be followed by a $ sign. The com-
puter accepts these characters as the variable name.

Example: A$="ONE DOZEN EGGS”

You can add strings to each other. The is called concatenation. You
cannot subtract, divide or multiply strings.

Example: 10 AS="1 A"
20 B$="M15 YEA”
30 C$="RSOLD"”
40 PRINT A$ +B$ + C$
RUN
| AM 15 YEARS OLD

Notice the spacing of the string characters here.
STRING FUNCTIONS

We can also use functions to act on strings. Have a look at the
following:

68

LEN

This function works out the length of the string argument, which must
be in brackets. So if you type PRINT LEN (“JOHN”) the computer
will return the result 4. This is telling you that there are 4 characters
irr the string ““JOHN". Blank spaces have the value of a character. Thus
if you put in spaces ‘J O H N’ it comes out as 7 characters.

STRS

The STR$ function changes a number argument into a string. Let us
take a look at the following example and see how it works.

A$=STRS (73)

Example:

This is the same as saying

Example: ’ A$="73"

Here is an example program

Example:
10 A$=STRS (7 *3)
20 B$=A$ + “BIG”
30 PRINT B$
RUN
21BIG
VAL

VAL works like STR$ but in reverse. It changes a string argument into
a number. It only works on numbers not on operators or other

characters.

Look at the following short program

Example: 10 A8 = "33"
20 BS="20"
30 C= VAL (A$ + B3)
40 PRINT C C + 100
RUN
3320 3420

69

SUBSTRINGS

It is also possible to get substrings of strings. A substring is as you might
guess a part of a string. For example: “ABC’ is a substring of

“ABCDE".

LEFT$(AS, N)

This will return the substring from the leftmost of string A$ — the
first character — to the Nth character.

Example: 10 A$=""ABCDE”
20 BS=LEFTS (AS + “FGH”, 6)
30 PRINT BS
RUN
ABCDEF

RIGHT$(AS$, N)

This will return a substring as in the above example but starting from
the Nth character from the end and running to the last one — the right
most character in the string AS.

Example: 10 A$ = “WHY”
20 B$ = RIGHTS (AS + “ME”, 4)
30 PRINT B$
RUN
HYME

MID$(AS, M, N)

This function returns a substring of the string A$ starting from the Mth
character with a length of N characters.

Example: 10 A$="“"ABCDEFGH’*
20 B$=MID$ (A8, 2, 3)
30 PRINT B$

RUN

BCD

70

ASC(AS)

The ASC statement which is written as ASC (A$) where AS$ is a variable
string expression, will return the ASCII code (in decimal) for the
FIRST character of the specified string. Brackets must enclose the
string specified. Refer to the appendix for the ASCII code. For example
the ASCII decimal value of X" is 88. If A$ = “XAB”, then ASC (A8) =

88.

Example: 10 X =ASC (“ROY”)
20 PRINT X
RUN
82
CHRS$(N)

This statement works the opposite way around to the ASC statement.
The CHR$ statement will return the string character which corresponds
to the given ASCII code. The argument may be any number from 0 to
255 or any variable expression with a value within that range. Brackets

must be put around the argument.

Example: 30 PRINT CHR$(68)
RUN
D

OCT$(X)

This will return a string which represent the octal (Base 8) value of the
decimal argument X. X is rounded to an integer before OCT$ (X)
is evaluated.

Example: 10 PRINT OCTS (24)
RUN
30

71

HEX$(X)

This function, similar to OCT$(X), will return a string which represents
the hexadecimal value of the decimal argument. X is also rounded to
integer before HEX$(X) is evaluated.

Example: 10 INPUT X

20 A$=HEXS(X)

30 PRINT X “DECIMAL IS”; AS; “HEXADECIMAL "
RUN

? 32 (user typed in 32)

32 DECIMAL IS 20 HEXADECIMAL

STRING$(1, J) OR STRINGS(I, X$)

The above two formats will return a string of length | whose characters
all have ASCII code J or the first character of X$.

Example: 10 X$=STRING$(10, 45)
20 PRINT X8 “MONTHLY REPORT” X&
RUN

—————————— MONTHLY REPORT

Where ASCII for 45 is the symbol ““—"".

INKEY$

INKEY$ returns either a one-character string containing a character
read from the keyboard or a null string (i.e., an empty string, with no
characters) if no key has been pressed at the keyboard. All characters

are passed through to the program except for |CTRL , which

terminates the program.

Example: 10 AS=INKEYS$
20 PRINT A,
30 GOTO 10

To stop this program, press

72

INSTR (1, X$, Y$)
This string function searches for the first occurrence of string Y$ in
X$ and returns the position at which the match is found. | represents

an optional offset position for starting the search, where 1 < | < 255,

If | > LEN(X$) or if X$ is null or if Y$ cannot be found, INSTR(I, X$,
Y$) returns a @ value.

If Y$ is null, INSTR returns | or 1.

Example: 10 X$=""ABCDEB””
20 Y$="B”
30 PRINT INSTR (X$, Y$); INSTR (4, X8, Y$)
RUN
26
INPUT A$

Your have come across INPUT a numerical variable in eariler chapters.
In fact, your computer allows for assiging a string which you typed in
while your program is running, to a string variable.

The above statement, INPUT A$ when executed, will print a ‘?’ sign to
ask you to type in characters from the keyboard, until you terminate
your input by pressing RETURN.

You should not embed ‘, ’ (comma) in the string you enter. Otherwise,
a ‘Redo from Start’ error message will be issued. Then the computer
prints another ‘?’ on the next line to let you re-enter your string.

Example: 10 INPUT A$

20 PRINT A$

RUN

? ABC, DEF [RETURN](you typed in)
? Redo from Start

? ABCDEF (you typed in)
ABCDEF

73

LINE INPUT AS

The statement works similar to INPUT AS, in which a line of characters
that you typed from the keyboard is assigned to the string variable AS$.
It differs from merely INPUT A$ by not printing a ‘?’ sign, and it

allows you to embed ’, * (comma) in your string input.
Example: 10 LINE INPUT A$
20 PRINT A$
RUN
ABCDEF, GHIJK |RETURN| (you typed in)
ABCDEF, GHIJK
INPUTS

The function INPUT$(X) is different from the command INPUT A$
mentioned in the previous chapters.

This function returns a string of X characters. The characters input
from keyboard are not echoed to the screen.

Example: 100 PRINT “TYPE P TO PROCEED OR S TO STOP”
1710 X$=INPUT $ (1)

120 IF X$ = ""P” THEN 500

130 IF X$="S” THEN 700 ELSE 100

STRING COMPARISONS

Relational operators can be applied to string expressions to compare
the strings for equality or alphabetic precedence. As far as equality is
concerned all the characters (and any blanks) must be identical and in

the same order.

Example: 10 A= “AA”
20 B$ = "BA”
30 IF A$ = B$ then PRINT 20
40 IF A% < B then PRINT 30
50 IF A$ >BS$ then PRINT 40
RUN
30

74

The comparisons are done by taking the ASCII value of the string
characters from the table in the appendix and then comparing these
values. The table gives us the value for ‘A’ as 65 and ‘B’ as 66. The

program above is therefore asking for confirmation that 65 is less
than 66.

If the first two CHARACTERS of a string are equal the computer will
search for the third CHARACTER and do the comparison on this.

Example: 10 AS = “ABC"”

20 BS = “ABD”

30 |IF B$ >A$ then PRINT 40
RUN
40

Here the critical comparison is between the characters C and D. The
ASCII table value of C is 67 and the table value of D is 68. BS is
therefore greater than AS.

75

76

CHAPTER 9

CONDITIONS

IF... THEN...ELSE
Conditional Branching
Logical Operators

TRUTH TABLES
ON...GOTO/ON...GOSUB
ON ERROR GOTO

RESUME

77

CHAPTER 9

CONDITIONS

IF... THEN...ELSE
Conditional Branching
Logical Operators

TRUTH TABLES
ON...GOTO/ON...GOSUB
ON ERROR GOTO

RESUME

77

IF... THEN... ELSE

As we make our way through BASIC, we find that we gain more con-
trol over the computer, that is, we are able to do more with the com-
puter. In this chapter we are going to take a look at the “IF ... THEN
... ELSE"” statement. This is, perhaps, one of the two most important
programming concepts in BASIC. The other one is “FOR ... NEXT".
We will look at this in the following chapter.

Let us look at this example.

Example: 60 IF A$ >B$ THEN PRINT A$ ELSE PRINT BS

This tells the computer that if the expression AS$ is greater than B$
to carry out the statement PR/INT A$,; otherwise it should carry out the
statement PRINT BS$.

CONDITIONAL BRANCHING

In general terms, the IF ... THEN ... statement is used for conditional
branching. It uses the general form “IF (condition) THEN (action
clause).” A condition is made up of: an expression, a relation and an
expression.

Any BASIC expressions may be used but both expressions must be of
the same type, that is either both numeric or both string expressions.

Relations or comparisons used in the |F . .. THEN statement are the
following:

= Equal to

<= Less than or equal to
<>Not equal to

>= Greater than or equal to
< Less than

> Greater than

Here are some more examples of how we can use conditionals.

IF...THENA=B
IF... THEN GOTO
IF... THEN GOSUB
IF... THENPRINT
IF... THEN INPUT

78

IF... THEN... ELSE

As we make our way through BASIC, we find that we gain more con-
trol over the computer, that is, we are able to do more with the com-
puter. In this chapter we are going to take a look at the “IF ... THEN
... ELSE"” statement. This is, perhaps, one of the two most important
programming concepts in BASIC. The other one is “FOR ... NEXT".
We will look at this in the following chapter.

Let us look at this example.

Example: 60 IF A$ >B$ THEN PRINT A$ ELSE PRINT BS

This tells the computer that if the expression AS$ is greater than B$
to carry out the statement PR/INT A$,; otherwise it should carry out the
statement PRINT BS$.

CONDITIONAL BRANCHING

In general terms, the IF ... THEN ... statement is used for conditional
branching. It uses the general form “IF (condition) THEN (action
clause).” A condition is made up of: an expression, a relation and an
expression.

Any BASIC expressions may be used but both expressions must be of
the same type, that is either both numeric or both string expressions.

Relations or comparisons used in the |F . .. THEN statement are the
following:

= Equal to

<= Less than or equal to
<>Not equal to

>= Greater than or equal to
< Less than

> Greater than

Here are some more examples of how we can use conditionals.

IF...THENA=B
IF... THEN GOTO
IF... THEN GOSUB
IF... THENPRINT
IF... THEN INPUT

78

Example: 30 IF X>25THEN 60

Here if the condition X > 25 is true, the computer is told to jump to
line 60 (Note: the GOTO is optional after THEN).

If the condition is not true, that is, if X is not greater than 25 then
the computer simply carries on with the normal line number order in
the program. Notice that it is not necessary to use the ELSE part of the

command here as this is optional.

Example: 10 INPUT A, B
20 IF A>B THEN 50
30 IF A< B THEN 60
40 IF A=B THEN 70
50 PRINT A; IS GREATER THAN"; B: END
60 PRINT A; IS LESS THAN"; B: END
70 PRINTA; IS EQUAL TO /B
80 END
RUN
? 73
7 1S GREATER THAN 3

Example: 40 IFP=6 THEN PRINT “TRUE” ELSE PRINT
“FALSE”

In this example if P = 6 the computer will print TRUE. Any other value
will produce a FALSE. In either case the computer will carry on to

the next line.

It is possible for more than one statement to follow the THEN or ELSE
command.

Example: 50 IFA=5THENPRINT “TRUE” : S=8 — 3:
GO TO 90 ELSE PRINT “FALSE”: K=K +8

So if A equals 5 the computer will print TRUE, substract 3 from the
variable S and go to line 90. If A does not equal 5 the computer will
print FALSE, add 8 to the variable K and then carry on with the next
normal line.

79

LOGICAL OPERATORS

Logical operators are used in IF ... THEN ... ELSE and such state-
ments where a condition is used to determine subsequent operations
within the user program. The logical operators are: AND, OR, NOT,
XOR, IMP, EQV.

For purposes of this discussion A and B are relational expressions
having only TRUE and FALSE. Logical operations are performed after
arithmetical and relational operations.

OPERATOR

NOT

AND

OR

XOR

IMP

EQV

EXAMPLE

NOT A

A AND B

AORB

A XOR B

A IMP B

A EQV B

MEANING
If A is true, NOT A is false.

A AND B has the value true only if A
and B are both true.

A AND B has the value false if either A
or B is false.

A OR B has the value true if either
A or B or both are true.
It has the value false if both are false.

A XOR B has the value true only if A
and B are different.

A XOR B has the value false if A and B
are the same.

A IMP B has the value false, only if A
is true, and B is false.

Otherwise, A IMP B has the value true.

A EQV B has the value true only if A,
B are the same.

A EQV B has the value false if A, B
are different.

80

TRUTH TABLES

The following tables are called TRUTH TABLES. They illustrate the
results of the above logical operations with both A and B given for
every possible combination of values.

TRUTH TABLE FOR “NOT”” FUNCTION

A NOT A
T F
F T

TRUTH TABLE FOR “AND” FUNCTION
A B A AND B
T T T
T F F
F T F
F F F

TRUTH TABLE FOR “OR” FUNCTION

A B AORB
T T T
T F T
F T T
F F F

TRUTH TABLE FOR ““XOR"” FUNCTION

A B A XOR B
T T F
T F T
F T i
F F F
TRUTH TABLE FOR “IMP” FUNCTION
A B A IMP B
T T T
T F F
F T T
F F T

TRUTH TABLE FOR “EQV"” FUNCTION

A B A EQV B
T T T
T F F
F T F
F F T

Note that T= TRUE and F = FALSE.
81

Example: 10 INPUT A, B, C
20 IFA=BANDB=C THEN PRINT “A=B=C"
30 IF (NOT A = B) OR (NOT B = C) THEN 50
40 END
50 PRINT “A=B=CIS FALSE”
60 END
RUN
? 10,5,7
A=B=CISFALSE J

Moreover AND, OR, NOT can be used to manipulate numerical values.
These operations are based on binary numbers with 1 and @ represent-
ing TRUE and FALSE respectively. For example:

i) NOT1=-2 [1=binary 00G00GO1 and —2=binary 11111110,
so it just changes the 1 to 0 and @ to 1. In other
words, TRUE (1) changed to FALSE (@) and
FALSE (0) is changed to TRUE (1).]

ii) 60R13=15 [6=binary 00000110 and 13=binary 00001181,
so with reference to the OR truth table, 6 OR
13 =15 = binary 00001111]

iii) 6 AND 13=4 [6=binary 0000110 and 13=binary 00001101,
so with reference to the AND truth table, 6 AND
13=4 binary 00000 100]

ON...GOTO /ON ... GOSUB

The ON ... GOTO or ON ... GOSUB statement allows the program to
direct its flow depending on the value of an expression.

For example: 100 ON L—1 GOTO 150, 300, 320

OR 100 ON L—1 GOSUB 150, 300, 320 J

The expression (L—1) is evalvated. Its value determines which line
number in the list will be used for branching or subroutine calling. If
the value is 3, for instance, the third line number (320) would be the
destination.

If the value of (L—1) evaluated is @ or greater than the number of listed
line numbers, the BASIC program will continue with the next execut-
able statement.

82

ON ERROR GOTO

Using this statement avoid halting the program when an error is en-

countered. The error is being trapped, by directing the program to a
routine (error handling routine).

Example: 10 ON ERROR GOTO 1000

Executing the above line will cause subsequent errors, including
immediate mode errors (such as SYNTAX ERRORS) to jump to the
specified error handling routine at 199@.

The ON ERROR GOTO statement may be located anywhere in the
program, but it is good practice to have it as early as possible, as this

statement must be executed befere the occurance of an error to avoid
program interruption.

RESUME

The RESUME statement is to continue a program exectuion that has
been halted due to an error. It is mainly used at the end of an error

handling routine, and it causes the program to restart execution in one
of these forms:

1. RESUME OR RESUME @ Program execution resumes at

the line which caused the error
2. RESUME NEXT Program execution resumes at
the line immediately following
the one which caused the error
3. RESUME line number Program resumes at the specified
line number

CHAPTER 1 O

LOOPING

FOR...TO
NEXT

STEP

WHILE WEND

85

FOR...TO...NEXT...STEP

Often we need the computer to perform repetitive tasks. The looping
process enables us to do just this without having to type in similar state-
ments many times.

For example if we want many numbers cubed and then divided by 3
we don’t have to type in various values; all we have to do is something
like this:

Example: 10 FORX=1T010
20 PRINT X (X ! 3)/3
30 NEXT X
40 END

RUN

7 .333333
2 2.66667
3 9

4 21.3333
5 41.6667
6 72

7 7114.333
8 170.667
9 243

10 333.333

From the above example we can see that the computer has cubed and
divided by 3 the numbers between 1 and 10. The FOR ... TO .. .-
statement, therefore, stipulates the range of numbers you wish to act
on. :

You will notice that the number were incremented (increased) by one
each time. The increment size can be changed by using the STEP
statement and a positive number. If a negative number follows the
STEP statement we will get a decrement (decrease). It is also possible
to use a decimal, an expression or a variable.

Example: | 79 FORX=1TO 10STEP 2
20 PRINT X:AX t 3)/3

30 NEXT X
40 END
RUN

This will act on all the odd numbers between 1 and 10 and your screen
will show the following numbers:

1 .333333
3 9

5 41.6667
7

9

Example:

114.333
243

You will also notice that each FOR loop must be closed with a NEXT
statement. The variable name of the NEXT statement must be the
same as the variable name of the FOR statement —in this case X. On
your computer the variable name following the NEXT statement can be
omitted if you wish. However it is good programming practice to put
it in. This can avoid unexpected results (and errors) when you have a
number of FOR-NEXT loops — particularly if they are ‘nested’
(explained shortly).

Loops are very useful for writing tables as you will see from the

following example.

Example: | 79 REM TO PRINT A SINE AND COSINE TABLE
20 PRINT “SIN(X)”, ““COS(X)”
30 FORX=0TO2STEPO.5
40 PRINT SIN(X), COS(X)

50 NEXT X
60 END

RUN
SIN(X) COS(X)
o 7
.479426 .877583
.841471 .540302
.997495 .0707371
.909298 —416147

If you do use a variable name following your NEXT statement and you
use 2 loops you must be careful not to cross your loops.

Example: {7 -
20 FORX=0TO 10
30 .
40 FORY=0TO5
50 e
~60 NEXT X
70 NEXTY

This causes crossed loops and will result in a NEXT WITHOUT FOR
error message. The correct way is as follows:

70........
20 FORX=0QTO 10
30......
40 FORY=00T5
[g@
0 NEXTY
70 NEXTX

This gives you the loop for Y “nested’” or fully inside the loop for X.

With your computer, the number of level of nesting for FOR—NEXT
loops depends on the memory size of the computer.

WHILE ... WEND

The combination of WHILE, WEND statement is another way to
execute a series of BASIC statements in a loop as long as a given
condition is true.

An example of WHILE/WEND is:

10 /1=0

20 WHILE S0 <99
30 =/+1
40 SQ=1/t2
50 PRINT I,
60 PRINT SQ
70 WEND

RUN

) 7

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

The purpose of this program is to calculate all the numbers whose
square is just less than 99.

The statement loop consists of line numbers 30 to 60. The expression
to be checked by WHILE statement is SQ < 99. When the value of SQ,
computed from the loop, is greater than or equal to 99, the loop is
not entered and program ends.

WHILE/WEND loops may be nested, i.e., place one loop inside another.
But you should make sure that each WEND will match the most recent

WHILE.

CHAPTER 1 1
SUBROUTINES

® GOSUB
® RETURN

GOSUB — RETURN

A program has a beginning and an end. It has a structure. This structure
is made up of smaller building blocks. You may need some of these
blocks or sections of the program many times in various places in the
overall program. To help us deal with these similar smaller parts of the
program we can use subroutines. The statements we use are GOSUB

and RETURN.

10 PRINT “HELLO”
20 GOSUB 50
30 PRINT “GOODBYE”
40 END
50 PRINT “HOW ARE YOU?”
60 GOSUB 80
70 RETURN
80 PRINT “SEE YOU”
90 RETURN
RUN
HELLO
HOW ARE YOU?
SEE YOU
GOODBYE

The lines are executed in this order 10, 20, 50, 60, 80, 90, 70, 30, 40.
Hopefully you can see from this example how the GOSUB statement

works.

The GOSUB statement tells the computer to move on to the line
number indicated, that is to the line number following GOSUB.
However unlike the GOTO command the GOSUB command makes the
computer “remember’” where it is jumping from, so it can come back
again to the statement that immediately follows the GOSUB statement.

The computer will carry on with the subroutine until the RETURN
statement is met. It is the RETURN statement that makes the com-
puter go back to the statement following the GOSUB statement.

For another example:

20 GOSUB 60 tells the computer to jump to line 60. The RETUR!\I
statement. On meeting the RETURN statement the computer will
go back and start executing at the statement following the GOSUB
statement in line 20.

80

Have a look at this example and see if you can work out what'’s happen-
ing.

10 FORX=1T0O5
20 GOSUB 60
30 PRINT X; S
40 NEXT X
50 END
60 S=0
70 FORJ=1TOX
80 Si=8+J
90 NEXT J
100 RETURN
RUN
1 1
2 3
3 6
4 10
5 15

Get the idea? Here the subroutine is the section from lines 60 to 100
inclusive, and we are “‘calling it’’ (i.e. using it) a total of 5 times.

91

92

CHAPTER 1 2

LIST AND TABLES

ARRAYS
DIM
OPTION
ERASE

93

ARRAYS AND DIM

There are two types of variables — Simple Variables and Array
Variables. Up to now we have been dealing with simple variables. Let

us now take a look at the array type.

An array is an organised list of values which provides an efficient
way of handling large amounts of information. The values can be
either numbers or strings. To set up an array you first have to give
the array a name and a size. The name can be either a letter or a string

e.g. A$ (5).

It is easy to distinguish an array variable from a simple variable. The
array variable is always foliowed by brackets containing a number. e.g.
A(2), B(7), G5$(7). This number in the brackets is called a subscript.

WHY USE ARRAYS?

Let us suppose you have a number of books at home — say 100 books
— and you want to index all your books. If we assign a variable to each

book name for example:

Example: 10 A1$="GONE WITH THE WIND"*
20 A28 =""OLIVER TWIST"

1000 L18="BASIC PROGRAMMING"

This would be very inefficient and time consuming. A better way of
dealing with this list is to use an ARRAY. The variable A$ will stand
for the list of books. Let us look at the following example:

Example: 10 REM BOOK NAMES

20 DIM A$(99)
30 FORX=0TO 99
40 INPUT “BOOK NAME"; A$ (X)
50 NEXT X

RUN

BOOK NAME?

o4

N

After you give a name after to the question mark, ‘BOOK NAME?’
will appear again underneath. This will carry on until your list is com-
pleted.

Before you can use an ARRAY it is necessary to use the DIM state-
ment. Above we have DIM A$(99). This tells the computer to reserve
space for the array called A$ and that array has 100 subscript variables
(from AS(Q) to AS$(99) inclusive). It is possible at a later time to sort,
rearrange or print out this set of data. This type of array is called an
one dimensional array and it deals with lists. DIM stands for dimension.

It is also possible to have a two dimensional array where we have two
subscripts and we are dealing with numbers in the matrix form.

Let us suppose we have 5 students doing 3 exams. The results of the
exams look like this.

EXAM(1) EXAM(2) EXAM(3)

STUDENT 1 50% 70% 90%
STUDENT 2 63 42 36
STUDENT 3 20 62 50
STUDENT 4 70 75 84
STUDENT 5 93 82 68

These results can be recorded on the computer using a two dimensional
array. We would have to start with the statement: DIM A (4, 2). Here
4 is one less than the number of students and 2 is one less than the
number of columns and in this case exams. So A(3, 0) will be 70.
This is the score of the fourth student in the first exam.

It is possible to have up to a three dimensional ARRAY — DIM A(3, 6,
2). The size of each dimension is limited by the memory size of the
computer so remember; A(X, Y) is atwo dimensional array variable,
and A(X, Y, Z) is a three dimensional one.

Note that if you do not use the DIM statement the subscripts @ — 10
are allowed for each dimension of each array used by default.

95

OPTION

The BASIC statement having the format:

OPTION BASE 0 |

or OPTION BASE 1 J

is used to set the minimum value for an array subscript.

If you do not specify, the computer assumes that your program is
OPTION BASE 0.

For instance, OPTION BASE 1 tell the computer that the lowest
value an array subscript may have is one.
ERASE

After you have set up some arrays at the start of your program, you
may want to eliminate them to free up your memory.

The BASIC statement used to do this is:

ERASE A BC,.....

Arrays having the same name may be redimensioned after they are
ERASEd, or the previously allocated array space in memory may be
used for other purposes.

Example: 100 DIM A (20), B(20)
'40@ ERASE A, B
410 DIM A (10), B(10)

CHAPTER 1 3
READ, DATA, RESTORE

® READ
@ DATA
@ RESTORE

97

READ AND DATA

When it is necessary to enter a lot of information or data into the com-
puter, using the INPUT statement can be very time consuming. To help
us out here we can use the READ and DATA commands.

Example: 10 DATA 10, 60, 70, 80, 90

20 READA,B,C,D,E

30 PRINTA;B;C;D;E
RUN

1 60 70 80 90

The READ statement consists of a list of variable names with commas
between each variable.

The DATA statement consists of a list of expressions separated by
commas. These expressions can be either numeric or strings. The
READ statement makes the computer look up the value of its variables
form the DATA statement. When the computer goes to READ first it
will assign the first expression from the DATA list. The next time it
goes to READ it will assign the second value — and so on. If the READ
runs out of DATA you will get ‘2 OUT OF DATA ERROR".

RESTORE

If you want to use the same data later on in the program you can do so
by using the RESTORE statement.

Example: 10 DATA 1,38 9
20 READ A, B, D
30 RESTORE
40 READX, Y
50 PRINT A;B
60 PRINTX:Y
70 END
RUN
7 3
7 3

The RESTORE command makes subsequent READ statement get their
values form the start of the first DATA statement.

Now see if you can work out what is happening here.

98

Example:

10 REM FIND AVERAGE
20 DATA0.125,3,0.6,7
30 DATA 23,93 252, 8
40 S=0
50 FOR/=1T08
60 READN
70 S=S+N
80 NEXT
99 A=S/8
100 PRINT A
RUN
9.52813

Now using our student’s examinations results form the chapter on
arrays see how the READ and DATA commands can be used.

Example:

10
20
30
40
50
60
70

80
90
100
110

CLS: DIM A (4, 2)

PRINT “RESULT” : PRINT

PRINT TAB(8); “EX(1), EX(2), EX(3)”

PRINT

FORJ=0TO4

PRINT “STUDENT”;J + 1,
FORI=0TO2:READ A(J, 1): PRINT A (J,1);:
NEXT : PRINT

NEXT

END

DATA 50, 70, 90, 63, 42, 36, 20, 62, 50, 70, 75
DATA 84, 93, 82, 6

RUN -

99

100

CHAPTER 1 4

PEEK AND POKE

® PEEK
® POKE

101

PEEK (address)

The PEEK function will return the value stored at the specified address
in the memory of the computer. The value will be displayed in the form
of a decimal number whose value is in range of @—255.

Example: 30 A=PEEK (28672)
40 PRINT A

This returns the value the program has at 28672 and gives this value to
A. It should be noted that the address need not be a value; it can be
an expression.

POKE address value, expression

The POKE function complements the PEEK function. It sends a value
to the stated address location. You need therefore an address and value,
and again the value has to be between @ and 255.

Example: 10 A=1
20 POKE 40960, A
30 B=PEEK (40960)
40 PRINTB

RUN

7

When using this command you must be very careful as it can destroy
your program. It is wise to save the program before you execute POKE.
It is not recommended for newcomers without prior knowledge of what
it does. You can only POKE to the Random Access Memory (RAM),
that is to the place where the computer stores the information it wants
to keep like your BASIC program, variables, the picture for the
television and the various musical notes. So maybe the address you
indicate may not be in the memory of the computer. The possible
address is in the range of —32768 to +65535. (but not all of this range
is occupied by RAM).

102

CHAPTER 15

GRAPHICS

GRAPHICS MODE VS TEXT MODE
COLOR

SET

RES

POINT

DRAW

MOVE

GRAPHIC CHARACTERS

103

GRAPHICS MODE VS TEXT MODE

So far we have been creating only characters on the screen display. In
fact, your computer is capable of two different categories of display.
Once the power is turned on the computer is in the normal text mode,
with maximum of 24 rows multiplied by 40 columns. You may also
have tried pressing the key at power up so as to enter another
text mode which can display a larger number of smaller characters. If
you haven't, try it now. Double the amount of information, (24 rows
by 80 columns), can be put on one screen in this mode.

You can also switch to a number of graphics modes that your computer
offers for programming and games purposes.

To get back to text mode for character display, your program should
execute a TEXT command. This BASIC command takes on a few
forms, with slightly different effects.

COMMAND FUNCTION
TEXT Selects text mode display.
TEXT 40 Selects 40 columns X 24 row text mode. If you

are already in 40 column mode, no particular
effect occurs. Otherwise, it clears the text screen.

TEXT 80 Selects 80 column X 24 row text mode. If already
in 80 column mode, no particular effect occurs.
Otherwise, it clears the text screen.)

The following is a brief description of the commands used for entering
different graphics modes. One thing to keep in mind is that after
invoking graphics mode commands. Your pro-
gram should be executing continuously or staying in a loop. Otherwise
when it stops execution and the control is passed back to the BASIC
Interpreter, the screen display will automatically flip back to text

mode.

In addition, LASER 350 users should note that some graphics modes
are not available to them unless a 64K RAM Memory Expansion
Module optional is installed. An #OUT OF MEMORY"' error message
will be issued to remind the user.

GR/GRO GR, which is same as GR 0, will set the screen to a
graphics display of 160H X 96V, with 16 different

colors available.

104

.

NOTE: The expression 160H X 96V means there are 160 different
pixels on a horizontal line and a total of 96 such lines in the vertical
direction. These figures indicates the resolution of the graphics mode.
The higher the figures, the greater the resoltuion and the more detailed

the graphics will be.

GR 1 GR1 will set the screen to 160H X 192V. There
may be 16 different colors on the whole screen,
but every set of 8 horizontal dots, counting from
left to right, can only have 2 different colors out
of 16 colors.

To visualize this limitation, you may partition one
horizontal line of 160 pixels in to 20 cells, with
each cell containing 8 horizontal dots.

8 dots 8 dots 8 dots
[I T — = o o —
cell#1 cell#2 cell # 20

Then the 8 dots in each cell may only have 2
different colors out of 16. For instance, if cell
= 1 is RED and GREEN, then the color CYAN
cannot be present in this cell.

GR 2 GR2 will set the screen to 320H X 192V graphics
mode. Any two out of 16 different colors are
available on the whole screen.

GR 3 (Only for LASER 500 and LASER 700. Available
for LASER 350 only with optional 64K RAM
expansion card.)

GR3 will set the screen to 160H X 192V graphics
mode. 16 different colors are available for every
dot.

GR 4 (Only for LASER 500 and LASER 700. Available
for LASER 350 only with optional 64K RAM
expansion card.)

GR4 will set the screen to 320H X 192V graphics
mode. Color limitation is similar to GR 1. That is,
16 different colors are possible on the whole
screen, but every set of 8 horizontal dots, counting
from left to right, can only have 2 different colors
out of 16 colors.

105

Y

GR5

(Only for LASER 500 and LASER 700. Available
for LASER 350 only with optional 64K RAM
expansion)

GR5 will set the screen to 640H X 192V graphics
mode. Any two out of 16 different colors are

available for the whole screen.

The following table summarizes the graphics modes available:

Graphic
Mode

0

Memory Resolution Color
Requirement (HX V)

LASER 350 160 X 96 16
LASER 500
LASER 700

LASER 350 160 X 192 16 (8 dots 2 colors out of

LASER 500 16 colors)
LASER 700

LASER 350 160 X 192 2
LASER 500
LASER 700

LASER 350 160 X 192 16
with optional

64K RAM M/E

LASER 500

LASER 700

LASER 350 320 X 192 16 (8 dots 2 colors out
with optional of 16 colors)

64K RAM M/E

LASER 500

"LASER 700

LASER 350 640 X 192 2
with optional

64K RAM M/E

LASER 500

LASER 700

Table 15-1 Graphics Modes
106

COLOR

The colors, mentioned above, only apply to the ‘Foreground’ color and
‘Background’ color of the display screen. In fact, your computer is
capable of altering the ‘Backdrop’ color through BASIC commands.

Backdrop color always referes to the color of the area between the
border of your monitor/TV screen and the active display area, i.e.,
area in which you can put text or graphics on. On the other hand, exact
meaning of Foreground and Background color are different in each
display mode.

In 40 column text mode, each individual character has its own pro-
grammable Foreground/Background color. The meaning of these colors
are illustrated in Fig.15-1.

Foreground color

Background color

Fig. 156—1

In 80 column text mode, there can be only 2 colors out of 16 possible
colors on the whole active display area. The color of the dots on the
dot matrix is referred to as the Foreground color, whereas the re-
maining color of the active display area is the Background color. The
actual meaning are illustrated in Fig.15-2.

Foreground
color

Background

color
Border of _
your Monitor/ Backdrop
TV Screen color

Fig. 15-2

107

!" graphics mode GR @ and GR 3, where each individual pixel can has
Its own color out of 16 possible colors, but always has a Background
color of black. It is not possible to change the Background color by
software. The Foreground color is the color of the dots being plotted
onto the active display area, as illustrated below. You may assume that
adiagonal line is plotted on these particular graphics modes.

Backdrop
color

! — Background
Border of color

Monitor/ (always black)
TV Screen
Foreground
color

Fig 15—3

In graphic mode GR1 and GR4, each set of 8 consecutive dots,
counting from the left, can only have 2 out of the 16 possible colors.
Fig. 15—4 is an enlarged view showing a typical set of 8 consecutive
dots. Each such set has its own Foreground color.

Foreground color

/ \
W [I
\\\ /“//'

Background color

Set of 8 consecutive
dots counting from left

I~
EEEREEAN]

Fig. 154

Any position on the set of 8-dots being ‘/turned on’’ by the SET, or
the DRAW command, is in its foreground color. Those positions being
“turned off” or untouched are in their Background color. Commands
to turn on and turn off a dot will be covered in the following pages.

108

In graphics mode GR 2 and GR 5, the whole active display area can
only have 2 colors out of the 16 possible colors. The meaning of Fore-
ground and Background color are similar to those iq 80 co|l:1mn text
mode. Fig. 15—5 lllustrates a typical display with a diagonal line plott-

£ed.

Backdrop
color
f
snc;rrc‘iiiro :)/ Background
T Beroen color
Foreground
color

FIG. 15-5

The BASIC Interpreter of your computer allows you to set or change
the Foreground, Background, and even the Backdrop color at your own

will.

For example, if you would like to have a colourful 40 column TEXT
display with green Backdrop color, blue background color and cyan
foreground text, you should type:

COLOR 3,1,2

The Backdrop color would change to green as soon as you press the

RETURN| key. However, the blue background and cyan foreground
affects only the ‘“Ready’” message and the lines below that message.

Lines above will remain unchanged. More general form of the COLOR
statement is: .

¢ Foreground/Background
color unchanged

COLOR 3, 1,2

Ready I

New Foreground/
Background color

New Backdrop color

109

More general form of the COLOR statement is:

COLOR I, J, K

Where |, J, K are numbers representing color codes of Foreground
color, Background color, and Backdrop color respectively.

The color code and the color represented are summarized as follows:

Code Color Code Color

0 black 8 grey—2

1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta
6 yellow 14 light yellow
7 grey—1 15 white

You may omit one or two of I, J, K if you do not want to change it.
But must remember to place commas in the command if I, OR J is
to be omitted.

Example: COLOR , ,K

This will change the Backdrop color to that represented by code K
and keep the Foreground/Background colors unchanged.

Furthermore, the latest COLOR command issued will determine the
color of the graphics that you are going to plot, as described in the
coming pages.

NOTE: There is one point which the user of a color TV should know.
As you might have observed, some combinations of Foreground/Back-
ground colors result in very blurred appearance. One such combination
is RED Foreground text on GREEN Background. This is the result of a
color TV standard that was internationally adopted. Color TV sets are
limited in their ability to place certain colors next to each other on the
same line. Therefore, some colors work excellently, while other com-
binations are to be avoided.

For LASER 700 users using RGB monitor, only 8 colors are available.
Color code 8—15 are same as 0—7.

110

GRAPHICS COMMANDS

The following commands are for creating graphics in the various
graphics modes.

SET (X, Y)

This command plots a dot at a specified location on the graphic screen,
which is determined by the values of X and Y. The value of X and Y
must be in the range that the current graphics mode allows.

The color of the dot being plotted is determined by the latest Fore-
ground color used. So you should have issued a COLOR I, J, K before
the SET (X, Y) command.

When this command is executed, the dot given by (X, Y) would be set
to the latest foreground color. The Foreground. color of the set of 8
consecutive dots in GR 1 & GR 4 would also be changed, making color
changes in all 8 dots of the set.

RES (X, Y)

This BASIC statement is complementary to the SET (X, Y) statement.
This is used to wipe out a point switched on by the SET command.
Similary, X, Y specify the location of the point and must be in the
range that the current graphics mode allows.

When this command is executed, the dot given by X, Y will be made
the same color as the background.

Note: Don’t confuse .RES command with the |RESET| key on LASER
500/700 keyboard.

Example: 10 COLOR 15,0 :GR 1
20 FORX=0TO 159
30 Y=INT (6/5 * X)
40 SET (X, Y)

50 NEXT X

60 FORI1=1TO 2000 : NEXT |
70 FORX=0TO 159
80 Y =INT (6/5 *Y)
90 RES (X,Y)

100 NEXT X

110 TEXT 40

RUN

111

This example will plot a diagonal line on the GR 1 graphic screen, and
then rub this line out. When this program is compieted, the computer
will return to text mode.

Note: If you want to keep the computer in graphics mode, replace
line 110 by:

110 GOTO 10

Press |CTRL to stop this program.
POINT (X, Y)

This tells you if a specific point has been plotted by the SET command.
If the specified point has been plotted, POINT (X, Y) will return its
color code. Usually it is used with the IF — THEN — ELSE statement.

Example: 80 SET (40, 20)
99 IF POINT (40, 20) THEN
PRINT “YES” ELSE PRINT “NO”*

DRAW (X, Y)

This will draw a straight line from the last drawn coordinates, say (X0,
Y0), to the new co-ordinate (X, Y) by ““turning on’ all the dots along
the line.

The next time you use the DRAW command, another straight line will
be drawn from the previous (X, Y) to the new (X, Y). The initial value
of (X, Y) will be taken as (@, @). The color of the line is determined by
the latest issued COLOR command.

You may use a series of such DRAW statements to create your own
polygon shape figure.

Example: | 79 COLOR 15,0, 0 : GR 1

20 MOVE (79, 15)

30 DRAW (149, 100) : DRAW (9, 100) : DRAW (79, 15)
40 GOTO 20

RUN

112

A triangular shape would be drawn as follows:

Press to stop.

MOVE (X, Y)

This statement moves the (X, Y) coordinates of last DRAW or MOVE
command to a new X, Y position. Although the command by itself
gives no visible effect on the graphic screen, it will affect the next
DRAW statement.

This statment can be used in conjunction with the DRAW (X, Y)
command to draw shapes composed of straight lines, while at the same
time, some segments are to be skipped.

The following example shows a simple way to use the MOVE and
DRAW statements to produce two rectangles, one inside the other.

Example:

19 GR1
20 MOVE (9, 11): DRAW (149, 11) : DRAW (149, 180) :
- DRAW (9, 180) : DRAW (9, 11)
30 MOVE (29, 31) : DRAW (129, 31) : DRAW (129, 160) :
DRAW (29, 160) : DRAW (29, 31)
40 GOTO 20
RUN

113

Press |CTRL to stop.
GRAPHICS CHARACTERS

Apart from plotting points and drawing shapes on graphic modes in the
previous pages, your computer is also capable of displaying ‘“Graphic
Characters’ onto the text screen. Of course these are not full graphics
in the sense that you cannot change every point on the screen. You
may only choose from a predefined set of graphic character patterns.

There are totally 32 graphic characters available in the current version
of your computer. Details of their patterns may be found in Appendix.

In order to produce these graphic character on the screen, you have
to press the key on LASER 500/700 or [T]on the
350. Once you press this key, you will stay in the graphic character
entry mode and you are free to type in more graphic characters. In this
mode, some of the keys on the keyboard will have different meanings

from those printed on top of the keys.

For example, after pressing [GRAPH] , the key [A] when pressed, will

generate a * *symbol on the screen. If you want to leave the graphic
character entry mode, just press the [GRAPH| ([CTRL] for LASER
350 users) key or simply the [RETURN]| key.

Here is a simple program showing you how to use these graphics
characters.

114

Example: 10 CLS
20 FORI=1T0O40
30 PRINT @7,
40 NEXT
RUN

READY

Note: While entering line 30 of this program, you have to press
' key

(or [CTRL for LASER 350), then press the ‘[1]
(or [CTRL]

to produce the symbol [@] , and finally press [GRAPH]
) to get back into normal character entry.

115

116

CHAPTER 1 6
SOUND AND MUSIC

@ SOUND
e MUSIC

117

SOUND

Another interesting feature of the computer is its ability to produce
sound. Here is an example program.

Example: 10 FORI=1TO8
20 READ X
30 SOUND X, 7
40 NEXT/
50 DATA 16,18, 20, 21, 23, 25, 27, 28
RUN

This will produce 8 notes going up the scale. In this program the
variable X is the frequency and the constant 7 is the duration of the

note.

It is possible to get 31 different frequencies and 9 different note
durations. The tables below show how which codes produce the
different frequencies and duration.

By varying the notes and duration therefore, and using the tables
below, it is possible to produce tunes of your choice.

DURATION
Code Note Note length
1 1
J g
1
- J T
3
3 f 5
1
% ' 7
3
5 ./— T
6 J 1
1
7 Jd iy
8 o/ 2
9 d. 3
118

FREQUENCY

Code Pitch Code Pitch
@ rest 16 Cc4

1 A2 17 C#4
2 A#2 18 D4

3 B2 19 D#4
a4 C3 20 E4

5 C#3 21 F4

6 D3 22 F#4
7 D#3 23 . G4

8 E3 24 G#4
9 F 25 A4
19 F#3 26 A#4
11 G3 27 B4
12 G#3 28 C5
13 A3 29 C#b5
14 A#3 30 D5
15 B3 31 D#5
MUSIC

Below you can see how a musical score is transposed into Data for the
computer.

TWINKLE, TWINKLE, LITTLE STAR
Nursery Rhyme

Key F

) = 1 T 1 I)|

Twin-kle, twin-kle, lit-tle star, How | won-der

s s f f m m r d d s s
-) —= T
'y, 1 1 T 2§ 14
Like a dia-mond in the sky. Twin-kle, twin-kle,
m r
) | | s f f m r d
 § i : | : 1 L I

1 1 1

lit-tle star, How | won-der what you are!

119

TWINKLE, TWINKLE, LITTLE STAR

Example:

2DATA21,4,21,4,28,4,28,4,30,4,30,4, 28,6, 26
4,26,4, 25,4

4DATA25,4,23,4,23,4,21,6,28,4, 28,4,26,4, 26
4,25,4,25,4,23, 6

6 DATA 28,4, 28,4, 26, 4, 26, 4, 25, 4, 25, 4,28, 6,
21,4,21,4,28, 4,28, 4

8DATA3P, 4,30, 4, 28,6, 26,4, 26, 4, 25,4, 25, 4
23,4,23,4,21,6

10FORI=1TO42: READ F, D: SOUND F, D:
NEXT: END

120

CHAPTER 1 7

STORING PROGRAM ON TAPE

@SETTING IT UP
e CLOAD

@ CSAVE
eVERIFY

@ CRUN

@ PRINT #

@ |INPUT #

121

Yo.u may have developed some programs which you want to retain
It is to.o much trouble to type in a program, especially if it is long-
every time you want to use it. This problem is easily solved. You can'
§tore your programs on tape and whenever you need them, load them
into memory.

SETTING IT UP

To do this you need an ordinary cassette tape recorder, a cassette tape
and interconnecting cords. Connect the recorder as shown in the
picture.

COMPUTER CASSETTE RECORDER
BACK OF UNIT

You need to be familiar with three commands, namely, CSAVE,
CLOAD and VERIFY.

There is a file name for each program on the tape. A file name is a
“must” for saving a program but not absolutly necessary for loading

and verifying a program.

The file name can be one to sixteen characters in length. The first
character must be a letter; the rest can be any character. For our pur-
pose saving a program means transferring a program that you have
typed into the computer, to a tape.

Verifying a program means checking to make sure that the program on
the tape is the same as the program in the computer.

Loading a program means transferring a program from the tape to the

computer.
122

CLOAD “FILE NAME"'

The procedure for loading a program from the tape to the computer is
as follows:

1.
2.
3

Load the tape containing the required program into the recorder.
Rewind the tape to the start of the required program.

Type the COMMAND CLOAD “FILE NAME"™.

BE SURE NOT TO PRESS THE KEY

Press the play button on the recorder.

Press the key.

If the computer finds no program on the tape, the statement
WAITING is displayed on the screen. If you want the computer to
come out of WAITING, PRESS before stopping the
cassette recorder.

If the incoming program has the file name which does not match
with the specified one, then the statement ‘FOUND T: FILE
NAME’ appears and the program is skipped.

The desired program is loaded with the statement

‘LOADING T : FILE NAME " appears.

When the statement READY is displayed, press the STOP button
on the recorder.

Let us suppose there are three programs on the tape and you have given
them file names: PROGRAM 1, PROGRAM 2, PROGRAM 3. You
want PROGRAM 3 and it is at the end of the tape. You can type:
CLOAD “PROGRAM 3”. Then your screen will show:

Example: CLOAD “PROGRAM 3"

WAITING

FOUND T: PROGRAM 1
FOUND T:PROGRAM 2
LOADING T: PROGRAM 3
READY

If you know the location of PROGRAM 3 and you set the tape at the
beginning of this program the screen will show:

Example: CLOAD “PROGRAM 3~

WAITING
LOADING T: PROGRAM 3
READY

NOTE T: stands for TEXT file.

123

CSAVE “FILE NAME"

If you wish to save a program, make sure that you use a good quality
tape. The quality of the tape can affect the quality of your recording.

It is important to set the volume of the cassette recorder within a
proper range. This range will vary from one recorder to another. The
tone should be set to MAXIMUM level.

The procedure for storing/saving a program is as follows:

1.

Type in the complete program. It is advisable to use a short pro-
gram at the start. Longer programs can be saved once you have
achieved success with a short program.

Type in the COMMAND CSAVE “FILE NAME”

Remember a File Name is a “MUST"’ for saving a program.

BE SURE NOT TO PRESS THE [RETURN| KEY

Load the recorder with a good quality tape.

Press the PLAY and RECORD buttons on the recorder.

Press the key.

The flashing CURSOR will disappear and the storing begins.
When the flashing CURSOR reappears, the storing is completed.
Press the STOP button on the recorder.

The program that you typed in is now stored on a tape. To make
sure that it is stored the user may verify this for himself.

VERIFY “FILE NAME"

To verify a program on tape (ususlly just after you have CSAVE‘d it).
The procedure is as follows:

1.

List the program in the computer to make sure that the program
still exists.

Type the COMMAND VERIFY “FILE NAME™
BE SURE NOT TO PRESS THE |[RETURN| KEY

Press the PLAY button on the recorder.
124

4. Press the - |RETURN| key. The flashing CUROSR will disappear
and the verifying begins.

Example: VERIFY “PROGRAM 2~
WAITING

FOUND T: PROGRAM 1
LOADING T: PROGRAM 2
VERIFY OK

READY

5. The ‘OK’ statement tells us that the programs on the tape are the
same as the program in the computer.

6. If the verifying reveals an error, the statement ‘VERIFY ERROR’
will be displayed on the screen. This statement shows that the pro-
gram on the tape is different from the one in the computer. In this
case the user should CSAVE the program and verify it once again.

You can verify that there is a program on the tape by listening. If there
is a program on the tape and you run it on the cassette recorder, the
recorder will give out a distinctive sound.

CRUN ““FILE NAME"

One more powerful command ‘CRUN’ can be used. This command is
similar to "CLOAD’ except that the loaded program will start execution
automatically after the loading is completed.

The four cassette interface commands, CSAVE, VERIFY, CLOAD and
CRUN help the user to save his programs, verify them, and get them
back into the computer to execute. The user should pay attention to
the volume level of the recorder. Cassette interface is a means of
inexpensive MASS STORAGE.

There are two more cassette type commands that the user should
become familiar with. They are:

PRINT #

PRINT # “FILENAME”, item list.

Sends the values of the specified variables or data onto a cassette tape.
It is understood that the recorder must be properly connected and set
in record mode when this statment is executed.

125

INPUT #

INPUT # “FILE NAME”, item list. .
Inputs the specified number of values stored on cassette and assigns
them to the specified variable names.

Example: 10 PRINT # “KAM”, 1,2, 3,4, 5
RUN

The data constants 1 to 5 are saved in the data file “KAM"'. BE SURE
to put your cassette recorder in RECORD mode BEFORE execution.

Example: 10 INPUT #+ “KAM”, A, B, C, D, E
20 PRINT A;B,C;DE;
RUN

FOUND D:KAM
7 2 3 4 5

The data in the data file ““KKAM’’ are assigned to the variables A to E.
BE SURE to put your cassette recorder in PLAY mode BEFORE
execution.

NOTE: D stands for DATA file.
NOTE: If you are still unsuccessful in trying to CSAVE, CLOAD,
CRUN or VERIFY your tape programs after several attempts, you may

try to use another brand or model of cassette recorder to test the result.
This is because not all of the recorders are suitable for data recording.

126

CHAPTER 1 8
PRINT FORMATTING COMMANDS

WIDTH

TAB

NULL

SPC

SPACES
PRINT USING
WRITE

127

WIDTH LPRINT integer expression

This statement sets the printed line width in number of characters for
the text screen or line printer.

If the LPRINT option is omitted, the line width is set at the text
screen. If LPRINT is included, line width is set at the line printer.

The ‘integer expression’ must be within 15 to 255 with initial default
value of 255.

Example: 10 PRINT “ABCDEFGHIJKLMNOPQR"
READY

RUN
ABCDEFGHIJKLMNOPQR
READY

WIDTH 16

READY

RUN
ABCDEFGHIJKLMNOP
QR

READY

TAB (1)

This command works in very much the same way as the TAB on a
typewriter. In this case it moves the cursor to a particular position of a

line.

|f the current print position is already beyond space |, TAB goes to
that position on the next line. | must be in the range 1 to 255 inclusive.
TAB may only be used in the PRINT or LPRINT statements.

Example: 40 PRINT TAB(6); 1, TAB(20),1
RUN
1 7
128

NULL n

This command is used to set the number of nulls to be printed at the

end of each line.

READY

vuLL 2

READY

100 INPUT X

2@@ IFX<50 GOTO 800

Example:

Two null characters will be printed after each line.

SPC (1)

The SPC (1) statement prints | blanks on the screen. It may be inserted
in your program to seperate two printed items by a specified number of
spaces, without tediously typing a large number fo spaces in entering

your program.

The value | must be in the range @ to 255. A ’; " is assumed to follow
the SPC (I) command, so that the next item printed will follow

immediately after the spaces.

Example: 10 PRINT “OVER” SPC(15) “THERE”
RUN
OVER e o ° ° ° ° ° ° o ° °
SPACES$ (X)

This statement is itself a string function which returns a string of spaces
of length X. The expression X is rounded to integer and must be in

the range @ to 255.

When used with the PRINT command, neatly laid out results will be

printed by a program.

129

Example: 10 FORI=1T05
20 X$=SPACE $ (1)
30 PRINT X8,/

40 NEXT |
READY
RUN
7
2
3
4

PRINT USING

This command is useful in allowing you to state how you want your
lines printed. It is designed particularly for reports and tables.

It takes the form of:

PRINT USING string, value or string

This string or value can be either a variable or constant. What will
happen is that the string or value to the right of the semi-colon will
be inserted as specified by the field specifiers,the preceding string.

A) “1"" This specifies that only the first character in the given string
is to be printed.

10 A$="ASDF”

20 PRINT USING “I";A$
RUN

A

B) “#” A number sign is used to represent each digit position in a
numeric field. Digit positions are always filled. If the number to be
printed has fewer digits than the positions specified, the number
will be right justified (preceded by spaces) in the field.

“ " A decimal point may be inserted at any position in the
field. If the format string specifies that a digit is to precede the
decimal point, the digit will always be printed (as @ if necessary).
Numbers are rounded as necessary.

130

Example: PRINT USING " # # # # ", .78

C)

0.78

 +" A plus sign at the beginning or end of the format string will
cause the sign of the number (plus or minus) to be printed before
or after the number.

" — " A minus sign at the end of the format field will cause
negative numbers to be printed with a trailing minus sign.

Example: PRINT USING “+ # #, = #»"—68.95
—68.95
PRINT USING “# ## % —"—68.95
68.95—
D) * **” A double asterisk at the beginning of the format string

causes leading spaces in the numeric field to be filled with asterisks.
The ** also specifies positions for two more digits.

Example: PRINT USING * * *# . #”—0.9
*~0.9
E) " $$ ” A double dollar sign causes a dollar sign to be printed to the

immediate left of the formatted number. The $$ specifies two
more digit positions, one of which is the dollar sign. The ex-
ponential format cannot be used with $$. Negative numbers cannot
be used unless the minus sign trails to the right.

Example: PRINT USING 8% # # #.# =" 456.78
$456.78
F) " *"$ " The **$ at the beginning of a format string combines the

effects of the above two symbols. Leading spaces will be asterisk
filled and a dollar sign will be printed before the number. **$
specifies three more digit positions, one of which is the dollar sign.

131

G) “, ' A comma that is to the left of the decimal point in a for-
matting string causes a comma to be printed to the left of every
third digit to the left of the decimal point. A comma that is at the
end of the format string is printed as part of the string. A comma
specifies another digit position.

Example: PRINT USING “s## % ,3 58", 1234.5
1,234.50

H) “ % " If the number to be printed is larger than the specified
numeric field, a percent sign is printed in front of the number.
If rounding causes the number to exceed the field, a percent sign
will be printed in front of the rounded number.

Example: PRINT USING “# #. ## 7, 111.22
% 111.22
PRINT USING . ##;.999
%1.00

WRITE

The WRITE command is similar to the PRINT command, except that
commas and double quotation marks are generated along with the
printed text.

The format of WRITE is

WRITE expression, expression,

Where the expressions must be separated by commas.

The output produced from WRITE also contains commas for numerical
values and double quotation marks for strings.

Example: 10 A=80:B=90: C$="THAT'S ALL"”
20 WRITE A, B, C$

RUN

80, 90,”THAT'S ALL”

READY

132

CHAPTER 1 9
USING A PRINTER

® LLIST
® LPRINT

133

- -

Cm— —

THE PRINTER (OPTIONAL)

To further expand the capabilities of your computer you can acquire
a PRINTER. This can be attached to your computer by means of a
PRINTER INTERFACE. If you decide to acquire a PRINTER, you will
receive a separate leaflet containing detailed operating instructions.

SETTING UP THE PRINTER

PRINTER

PRINTER
INTERFACE

COLOR
COMPUTER

To operate the computer successfully you need to familiar with the

following commands LLIST, LPRINT

LLIST

n relation to the PRINTER as LIST

This performs a similar function i
LLIST outputs to the PRINTER, to

does in relation to the TV screen.
give you a “*hard copy”’ of your programs.

LPRINT

This command (and statements) is similar to PRINT, except that
LPRINT is used with the PRINTER.

134

TN

CHAPTER 20

BASIC PROGRAMMING UTILITY
COMMANDS AND FUNCTIONS

@ AUTO

@ RENUM

® FREE

® SWAP

@ POS

@ LPOS

® TRON/TROFF
® ERR/ERL VARIABLES
® ERROR

® |INP

® OUT

® WAIT

® KEY

e JOY

135

AUTO LINE NUMBER, INCREMENT

This statement is a handy tool which generates a line number auto-
matically after every carriage return. It frees you from the tedious job
of typing line numbers while entering long programs. Moreover, it
avoids the danger of typing the same line number, which might destroy
your existing program lines.

AUTO begins numbering at your specified line number and numbers
each subsequent line by the specified increment. |f you omit the
optional parameters, the computer assumes the increment to be the
last AUTO statement specified, or the pre-set value of 10.

Example: AUTO 100, 50 Generates line number
100, 150, 200...........
AUTO Generates line number

10, 20, 30, 40

If AUTO produces a line number that is already in use, then the line
will be listed. Any input will replace the existing line. Typing a carriage
return immediately will save that line and generate the next line

number.

However, if a new line number generated is terminated by a carriage
return with no input typed in, then an ““‘undefined line number’’ error
will be printed.

To terminate AUTO, type |[CTRL . The line in which Control—C
is typed is not saved, so remember to make it separate line.

RENUM new number, old number, increment

This is another handly tool for re-arranging your program line numbers.
It makes the programme more readable and more comprehensive and
makes it easier to insert between two existing lines.

In the above expression, new number is the first line number to be used
in the new sequence, old number is the line number in the current
program where renumbering is to begin, increment is the space between
line numbers. If you don’t specify New Number and Increment, both
will be assumed to be 10. If Old Number is omitted, the entire program

will be renumbered.

Moreover, RENUM also changes all line number references following
GOTO, GOSUB, THEN, ON ... GOTO and ON . . . GOSUB . . . etc.

to reflect new line numbers.
136

Example:

RENUM Renumber the entire program.
The first new line number will
be 1@, with subsequent lines
each increasing by an increment
of 10.

RENUM 300,, 56 Renumber the entire program.
The first new line number will
be 300, with subsequent lines
each increased by an increment

of 50.
RENUM 1000, Renumber the lines from 900 up
900, 20 so they start with line number 1000

and b_y‘ an increment of 20.

FRE (0)/FRE (X$)

The expressions following FRE are dummy arguments. This statement
returns the number of bytes in memory not being used by your BASIC

program.

Strings in BASIC can have different lengths, but need to be manipulat-
ed. This frequently causes the internal memory become very fragment-
ed. Using this statement with a dummy argument can force BASIC to
gather up all the loose fragments into single piles. This is known as

‘“garbage collection”.

Appropriate use of this function frees up areas of memory, and can
often give you a surprising amount more memory space to work with.

Example: PRINT FRE (d)
14542
READY

137

SWAP variable 1, variable 2

This statement allows the program to interchange the values, or content
of two variables. The two variables may be of any type such as integer,
string, floating point . . . etc. But the two variables must be of the same
type in order to be interchangeable.

Example: 10 A=10:B=20
20 PRINT A,B
30 SWAPA,B
40 PRINT A, B
READY

RUN

0 20

20 10

READY

POS (X)

This statement returns the current cursor position. The leftmost
position is 1. X is dummy argument which does not affect the result.

Example: 10 IF POS(X) >60 THEN PRINT CHR$(13)

LPOS (X)
This statement returns the current position of the line printer print
head within the line printer buffer. It does not necessary give the

physical position of the print head.

X'is also a dummy argument here.

Example: 100 IF LPOS (X) >60 THEN LPRINT CHR$(13)

138

TRON/TROFF

TRON/TROFF commands are useful features for determining where
a program is going wrong (debugging). After TRON is executed in
either immediate mode or deferred mode, each line number of the
program is printed as it is executed. These line numbers apppear enclos-
ed in square brackets. This trace mode is turned off by the TROFF
statement or when a NEW command is executed.

Example: TRON

READY

LIST

10 K=10

20 FORJ=1T02

30 L=K+10

40 PRINT J, ;K ;L

50 K=K+10

60 NEXT

70 END

READY

RUN

[10] [20] [30] [40] 1 10 20
[(50] [60] [30] [40] 2 20 30
[50] [60] [70]

READY

TRQOFF

READY

ERR/ERL VARIABLES

When an error handling subroutine is entered after executing the ON
ERROR GOTO statement, the variable ERR contains the error code
for the error condition, and the variable ERL contains the line number
of the line in which the error was detected. The ERR and ERL variables
are usually used in IF . .. THEN statements to direct program flow in
the error trap routine.

Usually you would use the following statement in your error trapping
routine:

Example: 7.@ ON ERROR GOTO 1000

1000 IF ERR = error code THEN
1010 IF ERL = linenumber THEN

139

If the statement that caused the error was an immediate mode state-
ment, ERL will contain the value 65535.

Details of error codes are listed in the Appendix.

ERROR integer expression

This statement means different things compared with the ON ERROR
GOTO statement mentioned in earlier chapters. This error statement

serves two purposes:

1) Tosimilate the occurrence of BASIC error.
2) To allow error codes to be defined by the user.

FUNCTION 1

The value of the integer expression must be between 0 and 255. If the
value of this expression matches with an error code already used by
the BASIC Interpreter, than the ERROR statement will similate that
error and the corresponding error message will be printed.

Example: LIST

19 S=10

20 T=5

30 ERRORS+T

40 END

READY

RUN

String too long in line 30
READY

FUNCTION 2

To define your own error code, use a value that is greater than any of
those used by the BASIC Interpreter. This user-defined error code may
then be conveniently handled in an error trap routine.

Example: 110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET” ;B
130 IF B >50000 THEN ERROR 210

400 |IF ERR =210 THEN PRINT “HOUSE LIMIT IS

$50000”
419 IF ERL =130 THE RESUME 120

140

In this example, error code 210 is newly defined by the programmer to
trap the condition of variable B when it is greater than 5000. If such an
error was trapped, the program would resume at line number 120 and
prompt the user to input a value for B again.

INP (1)

Before going into this function, you will come across the more tech-
nical concept of INPUT/OUTPUT ports. These so called 'Ports’ are
something similar to memory (RAM, ROM etc.) but not exactly the
same. You have learned to POKE into and PEEK from memory, and
now you can do similar operation on the INPUT/OUTPUT Ports.

The instruction INP (I) returns the value read from INPUT Port I. |
must be in the range @ to 255. This value of | is limited by the Central

Processing Unit of your computer.

Example: 100 A =INP (255)

The actual value returned will be between @ and 255.

ouTlI,J

OUT is another instruction related to the INPUT/OUTPUT Ports.
This sends a byte to a machine output port. | and J are integer ex-
pressions in the range 0 to 255. | is the port number and J is the data
to be transmitted.

Example: 100 OUT 32, 100

WARNING: As similar to the POKE statement, improper use of the
OUT statement can crash your system. So you should understand the
internal structure of the computer before you use this statement.

WAIT port number, I, J

This WAIT instruction is used to suspend program execution while
monitoring the status of a machine input port.

The bit pattern developed at the INPUT Port is checked to see if it
matches a specific value while the program is suspended. The data read
at the Port is exclusive ORed (EOR) with the integer expression J, and
then ANDed (AND) with value I. If the result is zero, the BASIC pro-
gram loops back to read the port and check it again. If the result is
non zero, program execution continues with the next line number. IfJ
is omitted, it is assumed to be zero.

141

Example: 100 WAIT 32, 2

It may be possible for the WAIT statement execution to cause an
infinite loop. In which case it will be necessary to manually reset the

machine or power up again.

KEY (for LASER 500, LASER 700 only)

The command KEY, which takes a number of forms is another user-
friendly feature of your computer. It affects the ten function keys
located on the keyboard of your LASER 500/700. At power up, these
function keys are assigned their pre-set values. You may examine, print
or change these function key definition with this KEY command.

Format 1: KEY N, STRING

This form assigns a string to the function key N.

Example: KEY 3, “LIST”

This will assign the string “LIST’’ to F3, so that, each
time you press , ‘LIST’ will be output to the screen
just as if you had typed it from the keyboard.

Although there are only physically 10 Function keys found on the key-
board, you have 3@ different function keys, F1—F30, available.
Function key numbers 11—20 are generated by pressing the Function

key labelled - together with the SHIFT key. Function
key number 21—30 are generated by pressing the function key together

with the [CTRL| key.

Moreover you may add the ‘‘Carriage Return’’ code as part of your
function key.

Example: KEY 18, “CLS : LIST” + CHR$(13)

Where CHR$(13) is the ASCII code for ‘“Carriage Return’’

After executing’ the above line, pressing while holding the
SHIFT | key down will clear the display screen and list your BASIC
program.

You should note that if “+ CHR$(13)’” was omitted in the above

example, then pressing [SHIFT will not clear the screen and list
the program until the [RETURN|key is pressed.

142

Format 2:

Format 3:

KEY LIST

This will list all the definitions of Function keys F1—
F30 on the screen.

| keviust

This will print out all the definitions of Function keys
F1—F38@. You should have installed your printer before
using this command.

At power up, Function keys F1—F10 are pre-defined as follows:

Format 4:

Format 5:

Format 6:

F1 Clear the screen and list the program

F2 RUN the BASIC program

F3 Set 40 column text mode

F4 Set 80 column text mode

F5 Set white Foreground and black Background

F6 Set blue Foreground, light blue Background
and blue Backdrop

F7 Set normal display mode

F8 Set inverse display mode

F9 Set keyboard silent

F10 Set keyboard beep

| kevs |

This will set the keyboard to beep on every key you
press. This is also the power up pre-set condition.

| kevs |

This is complementary to the KEY B function. It sets
the keyboard to silent running, i.e., no beep for any key

YyOu press.

KEY D,n

This will preset the auto-repeating key delay, i.e., the
amount of time that you hold a key down before it
begins auto-repeating. The value of n is between 1 and
255 inclusive. The actual amount of delay time is n X
20ms. (1ms=one thousandth of a second)

143

Example: KEYD, 200]

This results in a 4 second delay before auto-repeat
starts.

Format 7: KEY P, n

This presets the auto-repeat period, i.e., the interval
between which two codes are generated after holding
down a key for enough time. Value of n is between 1
and 255 inclusive. The actual auto-repeat period is n
X 20ms. (1 ms — one thousandth of a second)

Example: KEY P, 5

This results in 100ms (-0.1 second) period for auto-
repeating. In other words, when a key is pressed down
for enough time, ten codes would be generated each
second.

Joy
The JOY function is valid only when you have installed an optional
Joystick Expansion Module. This hardware accessory consist 2 boxes.

Each box is equipped with one movable “stick’”” at the top and two
push bottoms, one on each side of the box as shown belows:

Fire Arm
Buttom Buttom
Arm - ‘ ‘ Fire
Buttom === == Buttom
Joystick Joystick
Left Box Right Box

Format of JOY Function is : JOY (X)
Where X is integer between @ and 5 inclusive.

144

JOY (9)

returns an integer value from @ to 8 which represents
the current position of the left Joystick.

The following diagram indicates the relationship between the Joystick
position and the JOY (0) value.

1

5

The centre position is assigned a value of 0.

JOy (1)

JOY (3)

JOY (4)

JOY (5)

returns a binary value (@ or 1), according to the current
status of the left ‘Arm Button’, i.e. the arm button on
the left box. Pressing the button results in a value of 1,
and releasing it results in a value of Q. This rule also
applies to other functions related to the button.

returns a binary value (@ ro 1) to reflect the current
status of the left ““Fire Button”. i.e., the fire button
on the left box. The value returned is 1 if the button
is pressed, and 0 if the button is released.

returns an integer value (@ to 8) which represents the
current position of the right Joystick.

Notation and meaning of the returned integer is the
same as in JOY (0).

returns a binary value (@ or 1) to reflect the current
status of the right arm button. The value is 1 if the
button is pressed, and 0 if the button is released.

returns a binary value (@ or 1) to reflect the current
status of the right fire button. The value is 1 if the
button is pressed, and Q if the button is released.

145

Example: 10 CLS
20 A=JOY (@) : B=JOY (1):C=JOY (2)

30 D=JOY (3): E=JOY (4):F=JOY (5)
40 PRINT A, B,C, D, E, F

50 GOTO 20

RUN

Move the Joystick around, press the buttons and see what happens to

the numbers shown on the screen.

Press to stop.

146

CHAPTER 21

SPECIAL DATA TYPE &
CONVERSION BETWEEN TYPES

DATA TYPES

DEF INT/SNG/DBL/STR
CDBL

CINT

CSNG

CVI/CVS/CVD
MKI$/MKS$/MKD$

147

DATA TYPE (This Chapter is for Advanced BASIC Programmers)

In.the previous chapters we have been manipulating numerical con-
stant, variables, integers, floating points numbers, strings and arrays
without rigorous understanding of data type. You might not have
aware that your computer has been treating all these matters with a

very clear defination of DATA Type.

The information, or data, that your computer’s BASIC Interpreter uses
can be boardly divided into CONSTANTS and VARIABLES.

Constants
Constants are the actual values which the BASIC Interpreter uses during

execution. There are two types: String and Numeric.

String constants are sequences of up to 255 alphanumeric characters

enclosed in double quotation marks.

Numeric constants are positive or negative numbers of the following
five types:
1. Integer constants — whose numbers between —32768 and +32767.

Fixed Point constants — positive or negative real numbers that con-

2.
tain a decimal point.

Floating Point Constants — positive or negative numbers represented
in exponential form, consisting of a signed fixed point number
followed by letter E and a signed integer exponent. The allowable
range for a floating point constant is 10738 to 10"'38 . (Double

Precision floating point constants use letter D instead)

4. Hex Constants — hexadecimal numbers with prefix & H.

5. Octal Constants — octal numbers with prefix & O or &.

In general, numeric constants may be either single precision or double
precision numbers. With double precision, the numbers are stored with
16 digits of precision, and printed up to 16 digits.

To summarize, a single precision constant is any numeric constant

that has

(i) seven or fewer digits, or

(i) exponential foim using E, or
(iii) a trailing exclamation point (!)

148

Lle .

A double precision constant is any numeric constant that has:

(i) eight or more digits, or
(ii) exponential form using D, or
(iii) a trailing number sign (#)

VARIABLES

Variables are names used to represent the values used in a BASIC pro-
gram. These values may be assigned by the programmer, or occur as
the result of calculation. Before a variable is assigned a value, its value
is assumed to be zero.

A variable name must not be a reserved word, i.e., that of special
meaning to the BASIC Interpreter.

For example, ‘GOTO’ is reserved.

Up to 40 characters can be used for the variable names in this BASIC
Interpreter.

Variables may represent either a numeric value, a string or an array.
String variable names are written with a dollar sign ($). Numeric
variables may be declared as integer, single or double precision by
attaching declaration characters as the last character of the variable
name.

Example:

LIMIT% declares an integer variable
MINIMUM! declares a single precision value
Pl # declares a double precision value

An array variable name has as many subscripts as there are dimensions
in the array. The maximum number of dimensions for an array is 255,
and the maximum number of elements per dimension is 32767.

The following table summarizes the storage space requirements of the
different types of variables:

149

BYTES

VARIABLES: INTEGER 2
SINGLE PRECISION 4
DOUBLE PRECISION 8

ARRAYS: INTEGER 2 per element
SINGLE PRECISION 4 per element
DOUBLE PRECISION 8 per element

STRINGS: 3 bytes overhead plus the present contents of the string.

Under certain circumstances, the BASIC Interpreter will convert a
constant from one type to another. Moreover, programmers are allowed
to perform conversion between data types or declare their constant or
variable to be of a particular type. The coming pages will describe the
BASIC statements which perform these tasks.

DEF INT/SNG/DBL/STR

There are four statements used to declare variable types: integer, single
precision, double precision, or string.

A DEF (type) statement declares that the variable names beginning
with the letter (s) specified will be that type of variable.

Example: 10 DEFDBL L—P

All variables beginning with the letters L, M, N, O and P will be double
precision variables.

10 DEFSTR A

All variables beginning with the letter A will be string variables.

10 DEFINT |-N, W—2

All variables beginning with the letters 1, J, K, L, M, N, W, X, Y, Z will
be integer variables.

If no such type-declaration statements are specified., the BASIC
Interpreter assumes that variable names without declaration characters

are single precision variables.
150

Finally, you should be aware that a type declaration character (such
as %, !, #) always takes precedence over a DEF (type) statement.

CDBL (X)
This function returns the number X in double precision number form.
Example: 10 A =454.67
20 PRINT A;,CDBL(A)
READY
RUN
454.67 454.670013427344
READY
CINT (X)

This function returns X in integer form by rounding the fractional
portion. X must be in the range —32768 to +32767 otherwise an

""Overflow’’ error occurs.

Example: 10 PRINT CINT (45.67)
READY
RUN
46
READY
CSNG (X)

This function returns X in single precision number form.

Example: 10 A= 9753421 #

20 PRINT A # - CSNG (A #)
READY

RUN

975.3421 975.342
READY

151

NOTE: The CVI, CVS, CVD, MKI$, MKS$ and MKD$ function may
seem a little strange. Actually they are intended for use in data storage
when the disk operating system is available.

CVI/CVS/CVD (string)

These functions convert string values to numeric values.

Formats: CVI (2 byte string)
CVS (4 byte string)
CVD (8byte string)

CVI converts a 2-byte string to an integer.
CVS converts a 4-byte string to a single precision number.
CVD converts an 8-byte string to a double precision number.

Example: 10 N$ = “TESTING STATEMENT""
20 PRINT CVI (N$)

30 PRINT CVS (N$)

40 PRINT CVD (N$)

RUN

17748 (Integer)
4.69115E — 14 (Single Precision)
9.826534929158341D — 3@ (Double Precision)
READY

MKI$/MKS$/MKD$ (expression)

These functions convert numeric values to string values.

Formats: MK I$ (integer expression)
MKS$ (single precision expression)
MKDS$ (double precision expression)

MKI$ converts an integer to a 2-byte string.
MKS$ converts a single precision number to a 4-byte string.
MKD$ converts a double precision number to an 8-byte string.

152

Example:

10 N$=“LASER 500"

20 PRINT CVI (N$): A=CVI (NS)

30 PRINT CVS (N§): B=CVS (N$)

40 PRINT CVD (N$): C=CVD (N$)

50 PRINT MKI$ (A) : PRINT MKS$ (B) : PRINT
MKDS$ (C #)

RUN

16716 (Integer)

1.43152E—-18 (Single Precision)

5.85250495516296D—25 (Double Precision)

LA

LASE

LASER 50

READY

163

154

CHAPTER 22

USING ASSEMBLY LANGUAGE
SUBROUTINE

DEF USR
USR
CALL
VARPTR

155

ASSEMBLY LANGUAGE SUBROUTINE

Assembly Language instructions are the lowest level program that your
computer can run. In fact, your BASIC program, and the BASIC
Interpreter resident in your computer, are resting upon Assembly
Language programs designed by our software engineers.

This chapter is written for the advanced BASIC programmers and those
ambitious readers who would like to probe into the hidden side of
computing beyond BASIC programs.

Assembly Language subroutines could be made by POKEing in-
struction into memory locations or taken from tape. It is advised that
you take great care when using Assembly Language as it can have dis-
astrous effects on stored programs.

DEF USR digit = integer expression

This statement is used to specify the starting address of an assembly
language subroutine to be called later by the user.

‘digit’ may be any digit from @ to 9. It corresponds to the number of
the USR routine whose address is being specified. If ‘digit’ is omitted,
DEF USR@ is assumed.

The value of the integer expression is the starting address of the USR
routine.

You are free to use any number of DEF USR statements in your
BASIC program to redefine subroutine starting address and to access
these subroutines.

Example: .

200 DEF USRO = 24000
210 X =USRO (Y t Z2/2.89)

156

USR digit (X)

This statement calls the user’s Assembly Language subroutine with

argument X.

‘digit’ is in the range @ to 9 and corresponds to the digit supplied with
the DEF USR statement for that routine.

USRO is assumed if “digit’ is omitted.

Example: 40 B=T *SIN(Y)
50 C=USR (B/2)
60 D =USR (B/3)

When the USR function call is made, register A contains a value that
specifies the type of argument that was given. The value in A may be
one of the following:

Value in A Type of Argument

2 Two-byte integer (two’s complement)
3 String

4 Single precision floating point number
8 Double precision floating point number

If the argument is a number, the [H, L] register pair points to the
Floating Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

FAC—3 contains the lower 8 bits of the argument and

FAC—2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC—3 contains the lowest 8 bits of mantissa and

FAC—2 contains the middle 8 bits of mantissa and

FAC—1 contains the highest 7 bits of mantissa with leading 1 suppress-
ed (implied). Bit 7 is the sign of the number (O=positive, 1—negative)
FAC is the exponent minus 128, and the binary point is to the left of
“the most significant bit of the mantissa.

If the argument is a double precision floating point number:

FAC—7 throughFAC—4 contain four more bytes of mantissa (FAC—7
contains the lowest 8 bits).

If the argument is a string, the [D, E] register pair points to 3 bytes
called the “’string descriptor.”” Byte @ of the string descriptor contains
the length of the string (0 to 255). Bytes 1 and 2, respectively, are the
lower and upper 8 bits of the string starting address in string space.

157

CALL variable name (argument list)

The CALL statement is another way to transfer program flow to an
external subroutine.

“variable name’’ contains an address that is the starting point in
memory of the subroutine. It should not be an array variable name.

“argument list”’ contains the arguments that are passed to the external
subroutine. It should contain only variables.

Example: 110 MYROUT = & HD 000
120 CALL MYROUT (I, J, K)

°

The program assigns hexadecimal D@0 to the variable name MY.ROUT
and calls the subroutine at hexadecimal D@@0, passing the variable |,
J,Ktoit.

VARPTR (variable name)

This BASIC function returns the Memory Address of the first byte
of data identified with ‘variable name’. A suitable value must have been
assigned to ‘variable name. prior to the execution of VARPTR.

Any type of variable name may be used (numeric, string, array), and
the address returned will be an integer in the range 32767 to —32768.
If a negative address is returned, add it to 65535 to obtain the actual
address.

VARPTR is usually used to obtain the address of a variable or array so
it may be passed to an assembly language subroutine.

Example: 100 X = USR (VARPTR (Y))

158

CHAPTER 23

HINTS ON MORE EFFECTIVE
PROGRAMMING

159

There are several methods that you can use to improve your program.
A program is effective means that this program occupies less memory
space or executes much faster. The methods are explained as follows:

1) Useless LET
The use of the command LET is optional for this computer. You

may omit the LET command to save memory space for your
. program.

2) Use less REM
REM command will allow you add remark to your program but it

also occupies memory space. You may delete all unnecessary REM
statements in your program.

3) Use Multiple-statements
The use of multiple-statements will save memory space and also

speed up your program.

4) Use integer variables
Integer variables occupy less space than real variables. When-

ever possible, you may substitute the real variables A, for example,
by the integer variable A%.

5) Use subroutines
You may use subroutines to save program space if the operation is

called from different places on your program several times.

6) Use less parentheses
You may eliminate the use of parentheses whenever possible to

save memory space.

7) Use simple expression in functions.
You may get the result from a function much faster if you simplify

the argument of that function.

Example: A
10 A=3 2+17—-22/3:A=INT (A)

will execute much faster than

Example: R
10 A=INT (3"2+ 17 — 22/3)

but occupy more space.

160

8)

9)

Estimate the size of array
The use of DIM occupies much memory space. Therefore it s

better to assign just enough size for your array. Also use the zero
subscripted elements as they are always available.

Use READ and DATA
Often you have to use the same command many times but with
different parameters. In order to save space and repetitive typing,

you may put these parameters into DATA statements and retrieve
them by READ statements.

161

162

PART III

TECHNICAL REFERENCE
MANUAL

163

INTRODUCTION

This part of the Manual covers the technical information of the three
models LASER 350/LASER 500/LASER 700. Advanced users will find
this part useful for probing into the internal workings of the computer.

Beginners may skip this part.

The overall Memory Organization will be presented first. This includes
the Bank — Switching technique used in this computer, Physical/
Logical Address Space and how to configure Memory Banks in user
programs. Then, more detailed description of Memory Usage under the
title of RAM, ROM and Memory mapped 1/0 will be given. 1/0 Ports
usage summarizes the necessary information for controlling your

computer via software.

es available to your

The second chapter discusses the Display Mod
tion of each display

computer, the screen map and the color informa
mode.

The third Chapter is dedicated to hardware details of the computer.
The overall hardware structure is presented by functional block dia-
grams and further explained with simplified schematics. It is hoped
that programmers can make use of these simplified functional blocks,
together with the detailed circuit schematic diagrams in the Appendix,
to understand the internal structure of this computer.

The fourth chapter discusses the software aspects of your computer.
The power up sequence for the ROM cartridge and the automatic
bootstrapping of the Floppy Disk are of interest to the advanced user,
in particular, for designing their own ROM cartridges. Some useful
Assembly Language entry points for user calling are also listed.

em Monitor features. Each

These Monitor Command
o is

The last chapter describes the built-in Syst
Monitor Command is explained in detail.
would be most valuable to Assembly Language Programmer wh

debugging at the machine language level.

(Please note that in the technical reference manual hexadecimal
numbers are used to represent memory address and data for con-

venience).

164

CHAPTER 1
MEMORY ORGANISATION

® BANK-SWITCHING
e MEMORY USAGE

— ROM MEMORY

— RAM MEMORY

— MEMORY MAPPED 1/0
e [|/OPORTS USAGE

— PORT 44H

— PORT 45H

165

N —.

o ———————

The heart of your computer is the Z-80A microprocessor referred to
hereafter as the CPU (Central Processing Unit). The Z-80 microproces-
sor can directly reference a total of 656536 different memory locations
by means of its 16 address lines. In computer terminology, the address
space is 64K (1K = 1024 locations).

The VLS| Gate Array inside your computer further enhances the
addressing capability to 256K (262144 locations) via a Windowing or
Bank-Switching technique. The 256K memory address will be refered
to as the Physical Address Space while the original 64K available to
the Z-80 microprocessor will be refered to as the Logical Address

Space.

The concept of Physical Address Space and Logical Address Space is
illustrated is Fig. 1—1.
LASER 350 / LASER 500 / LASER 700

Memory organization

Physical Address Space

256K
16K
BANK Number| 3FFFF
F W 7-80 Logical Address Space
E ROM 64K
0 | _ FExpansion | 1/0 PORT
C Space FFFF
30000 43H
B Ce0o
- —r;u_n_ I 42H
AL _MAM] 8000
9 Expansion BANK- 41H
———————— SWITCHING 4000
8 Space
4BH
20000
7 Display RAM 2000
6 RAM
5 4164 X 8
4
- 10000
Display RAM
3 | RAMIHE% D
2 10
1 ROM
0 ROM
00000 J

Fig. 1—1 Memory Organization LASER 350 / 500 / 700

166

BANK-SWITCHING

For convenience in discussion, the 64K logical Address Space of the
Z-80 can be divided into four distinct areas each of 16 Kbytes in length.
On the other hand, the 256K Physical Address Space of your computer
is also divided into sixteen memory banks, each bank 16K bytes in
length. These banks are numbered from 0, 1, 2 to FH, which corres-
ponds to Physical Address Q000QH to 3FFFFH.

For example, bank @ covers the area O0000H to P3FFFH while bank 4
covers the area 10000H to 13FFFH.

The term Bank-Switching or Windowing refers to the process of
mapping the 16 banks (@, 1, 2 FH) in the Physical Address Space
into the 4 distinct areas of the Z-80 logical Address Space. To make
things simple, the Z-80 CPU may be thought of as having four
“SOCKET" in its 64K memory address space. Each “SOCKET"

accepts one 16K Byte bank of memory. Any one 16K bank is available
to the Z-80 CPU simply by “’plugging” in the “SOCKET"" with the bank
number. Incidentally, a “SOCKET" being “plugged” in with a new
bank number would imply that the old bank number is automatically

“unplugged” and hence, not available to the CPU through that
"“SOCKET".

The actual bank configuration within the Z-80 logical Address Space
is done by writing into hardware 1/0 Ports 40H, 41H, 42H and 43H,
which determines the Bank assignments of the Z-80 CPU counting from

lowest memory to highest memory. It is meaningless to read from these
Ports because of their “write-only’’ nature.

For example, to assign Bank @ to address GOOOH—3FFFH in Z-80
logical Address Space, use the following machine language instructions:

LD A, #0H
OUT (40H), A

Only the lower 4 bits of the data sent out are significant. The Upper
4 bits are neglected.

At power up, the Memory Bank configuration in the Z-80 CPU
Address Space is forced by hardware to be all mapped to Bank g, so
that the resident ROM is always enabled in logical Address 0QQ0OH—
3FFFH. The CPU will then perform power up initialization and recon-
figure these Memory Banks.

167

MEMORY USAGE

The LASER 350/LASER 500/LASER 700 computers are equipped
with the same VLS| Gate Array Chip that handles the 256K Physical
Address and their Bankswitching circuitry.

() ROM MEMORY::

All three models (LASER 350/LASER 500/LASER 700) have a built-in
32K bytes system ROM BASIC Interpreter. They are mapped into
BANK 0 and BANK 1 of the 256K Physical Address Space. These two
16K banks @, 1 are in turn mapped to logical address 000OH—-3FFFH
and 400O0H—7FFFH respectively when BASIC is running. However,
bank1 might be temporarily switched out or “unplugged’” from
40PPH—7FFFH for writting into display RAM area or reading from the
built-in memory mapped |/O area such as keyboard polling.

BASIC programmers should regard the Z-80 logical Address POOOH—
7FFFH as ROM area. Therefore, they should bot POKE data into these
addresses because ROM content cannot be changed by POKEing.

Physical Address BANKS OCH through OFH (totally 64K bytes) are
reserved for ROM Expansion. Refer to the chapter on Software Aspects

for more information about ROM cartridge design.

(1) RAM Memory

The 16K on-board RAM of the LASER 350 is defined by hardware to
be occupying BANK3 of the 256K Physical Address Space. Without
any RAM expansion, this one and only one 16K bank of RAM would
be mapped into the Z-80 Logical Address Space 800PH—-BFFFH.

In the case of the LASER 500 without RAM Expansion, BANK 4
through BANK 7 of the 256K address space would be defined as the
64K on-board RAM. In fact, the 64K RAM Expansion Module of
the LASER 350 also occupies these areas in the 256K Physical Address

Space.
At power up, the Z-80 CPU checks for the presence of the 64K RAM

from BANK 4 to BANK 7. If it is present, then Physical BANK 4

and BANK p. would be mapped, or “plugged” into Z-80 Logical
Address 8000H—BFFFH, and COOOH—-FFFFH respectively. Your

BASIC program, data variables would be residing in these areas too.

168

Similary for the LASER 700 (64K RAM or 128K RAM built-in) and
the LASER 350 with 64K or 128K RAM expansion, Physical BANK 4,
5 would be mapped into 800@PH—FFFFH in the Z-80 Logical Address
Space. In fact, your computer’s BASIC Interpreter does not distinguish
between a LASER 350 with 64K RAM Expansion, or LASER 500, or
a LASER 700 as far as software is concerned. The BASIC Interpreter
will not utilize all of that “unplugged’”” RAM memory, Users would
have to write a special program in order to access this RAM.

Physical Address BANK 3 and BANK 7 are of special meaning to your
computer. They are defined via hardware to be the display RAM area.
The 40 and 80 column text screen, graphic mode screens GRO through
GR 5 are using these RAM areas for memory mapped display. To
change the display (text or graphics), simply write to these RAM
locations. You are allowed to choose between BANK 3 or BANK 7 as
display RAM (either BANK 3 or BANK 7). would be termporarily
“plugged” into the Z-80 Logical Address Space, which “‘unpluggs” the
BANK 1 ROM for a short while. This sometimes results in the same
BANK being mapped into two different Logical Address areas at the

same time. Nevertheless, this is allowed and is necessary for the LASER
350 with only 16K RAM.

The current version of BASIC Interpreter uses part of BANK 6 for
the user-defined Function Key Definition text data. So you should
be aware of this if your program is using BANK 6 for data storage.

If you have LASER 350 with 128K RAM Expansion, or LASER 500
with 64K RAM Expansion, or a 128K RAM LASER 700, or 64K RAM
LASER 700 with 64K RAM Expansion, then BANK 8H through
BANK BH are available to you as user RAM. You may perform BANK-
SWITCHING in your program and use these areas for data storage.

(111) Memory Mapped 1/0

BANK 2 of the 256K Memory Address Space in LASER 350/500/700
is reserved for on-board Memory Mapped 1/0. The physical location
PABPOH—-PAFFFH of BANK 2 (totally 2K Bytes decoded address)
is used in two different ways.

169

Firstly, the keyboard is scanned by reading these locations. The key-
board’s keys are arranged in a matrix with a number of rows and
columns. Each row of the matrix is mapped into a memory location.
Each column is mapped into the corresponding bit position of that
‘memory location. The key are scanned by an active low signal. If a key
is pressed, the corresponding bit of the corresponding location will be
reset. The actual locations corresponding to the 12 rows are shown as

follows:

Address Read Key Matrix row line
AFFEH AQ
AFFDH A1l
AFFBH A2
AFF7H A3
AFEFH A4
AFDFH Ab
AFBFH A6
AF7FH A7
A8FFH A
A9FFH B
AAFFH C
ABFFH D

For details of the keyboard matrix structure, refer to the correct
section of keyboard.

The lines D, C, B, A are decoded outputs from a TTL decoder LS138.
These four lines are only present in the LASER 500/700. They are
not implemented on the LASER 350.

Secondly, when written, the entire area would perform output
functions on each bit as shown in the table below:

Bit number 1/0O Function Remarks
0 Buzzer Toggling bit 0 rings the Buzzer
2 Cassette Output
3 Text/Graphic ‘1’ for Graphics Mode
Mode Select ‘0’ for Text Mode
6 CAP LOCK ‘1" for LED off
Indicator ‘0’ for LED on

Table 1—-1 1/O Area Functions

170

The following diagram summarizes the memory bank configuration
used in LASER 350/LASER 500/LASER 700 and the presence of
RAM Memory Expansion.

Z—80 Logical Address Space Z—80 Logical Address Space
FFFF[EMPTY FFFF[RAM
5 5
C0Go0 [RAM Co00(RAM
3 4
8000[rOM [Display [1/0 8000[ROM [Display | /0
1 3 2 1 7 2
4000[ROM 4000 [ROM
0 0
0000 0000
LASER 350 (16K only) LASER 350 with 64K RAM
Expansion
LASER 500
LASER 700

Fig. 1—2 LASER 350 /500 /700
Memory Bank Configuration

Three BANKS are placed side by side at Z-80 Logical Address Space
400PH—7FFFH, indicating that these BANKS are temporarily “plugg-
ed’” in and later ““unplugged’’ from that “SOCKET"".

The notation used in this figure is to place the BANK number (0—FH)
in the centre of the rectangle which represents the 16K ““SOCKET"
in the Z-80 Logical Address Space. The smaller word at the left hand
top corner of the rectangle describes the kind of memory, 1/0, or
whatsoever mapped from the 256K Physical Address Space.

You might have noticed that Z-80 Logical Address COQOH—FFFFH
in the LASER 350 (16K RAM only) is mapped to BANK 5 but labelled
“EMPTY".Therefore reading from, or writting to COOOH—FFFFH are
meaningless exercise, because BANK 5 is not occupied by any physical
device.

171

1/0 PORTS USAGE

Apart from Memory Mapped [/0O as described in the previous pages, the
Z-80 CPU of your computer is capable of performing 1/0 Map;ped
1/0 via a I/0 REQUEST (IORQ) line. A maximum of 256 different 1/0
Ports could be defined by hardware circuitry. The VLSI Gate Array of
the LASER 350/500/700 has already implemented this for you, with
some 1/O Ports well defined for special functions which controls the

operation of your computer.

You should have learned that 1/0 Ports 40H, 41H, 42H, 43H define the
Memory Bank Configuration in the Z-80 Logical Address Space. Besides
these four, 1/0 Port 44H and 45H are of special interest to you. Port
44H controls the Screen Display Mode while Port 45H controls the

color of some display modes.

(1) Port 44H

The following table summarizes the relationship between the ' bit
pattern written to this port and the display mode invoked. Please note
that these are ‘write only’ Ports and any data read from them are

s. Moreover, text mode or graphic mode is determined

meaningles
K 3 of 256K Physical

by bit 3 of 1/0 location BA8QOH—BAFFFH (BAN
Address Space).

Text Mode (Bit 3 of 1/O area = 0)

Port44: bit3 bit 2 bit 1 bit O Mode Display RAM at
] X X (0] 40 BANK 7 1F800H
column 1FFFFH
X 24

row
X a 40 BANK 3 0F8G@H

column @FFFFH
X 24

row
1 80 BANK 7 1F800H

column 1FFFFH

. X24

rows

1 X X 1 80 BANK 3 QF800H
column @FFFFH

X 24

row

X =don't care condition

172

Graphic Mode (Bit 3 of 1/O area =1)

Port 44 : bit 3 bit 2 bit 1 bit @ Mode

2 (] ? X GRS
1 [4) ? X GR5
0 (4] 1 0 GR4
1 9] 1 (4] GR4
[0) 2 1 1 GR3
1 @ 1 1 GR3
[9) 1 0 X GR9
1 1 ? X GR9O
(%} 1 1 ? GR2
1 1 1 @ GR2
? 1 1 1 GR1
1 1 1 1 GR1

Display RAM at

BANK 7 1CO00—1FFFF
BANK 3 @CODO—OFFFF
BANK 7 1C@@0—1FFFF
BANK 3 @C@QR0—OFFFF
BANK 7 1COQ0—-1FFFF
BANK 3 @CPO0—@FFFF
BANK 7 1E@0Q—1FFFF
BANK 3 PEG@Q—OFFFF
BANK 7 1EQPP—1FFFF
BANK 3 QEQBQ—QFFFF
BANK 7 1EQPOG—1FFFF
BANK 3 OE@OPD—BFFFF

You might have noticed that bit 3 of Port 44H determines either BANK
7 or BANK 3 for use as the Display RAM, i.e., if Bit 3=0, Display RAM
is at BANK 7, otherwise at BANK 3. An ‘X’ in the table entry indicates
a don’t care condition. Either a logical ‘1’ or ‘D’ written to these bit

positions will not affect the result.

Bit 4 through Bit 7 of Port 44H determines the Backdrop color. The

format is as follows:

bit 7 6 5 4
[Port 44 | [B|R|G|B]
Backdrop color

The bit labelled ‘Br’ refers to the brightness of that color, while the re-
maining 3 bits labelled ‘R’, ‘G" and ‘B’ combine to form the ‘Hue’

of the color.

The combinations of Br, R, G, B to form 16 different colors is duplicat-

ed here for your convenience.

173

Table 1—2 Color Code Table

Br R G B Color Br R G B Color

0 O O O Black 1 0 0 O Light Grey
0...0 0 1 Blue 1 0O 0 1 Light Blue

0 O 1 0 Green 1 0O 1 0 Light Green

0 O 1 1 Cyan 1 o 1 1 Light Cyan

0™ #1 0 O Red 1 1.0 0 Light Red

0o 1 0 1 Magenta 1 1 0 1 Light Magenta
0 1 1 0 Yellow 1 1 1 0 Light Yellow
0o 1 1 1 Grey 1 111 White

Please note that the above Color Code Table also applys to other
graphics/text modes which use the “Br RGB’’ 4 bit combinations.

(11) Port 45H

The bit pattern written to Port 45 affects the Foreground/Background
color in some of the display modes including text modes and graphics
modes. For details of the Foreground/Background colors in each dis-
play mode please refer to the Chapter on graphics commands in the
BASIC Programming Manual (PART I1).

The following Display Modes will have their Foreground Background
color controlled by Port 45H.

(i) 80 column X 24 row text mode
(i) 640H X 192V graphics mode GR5
(iii) 320H X 192V graphics mode GR2

Figure 1—3 shows the format of 1/0 Port 45H and the Foreground/
Background color of the above three display modes.

bt 7 6 5 4 3 2 1 0
rot45u] [Br[R]G[BIBr[R]G]B

Foreground color Background color

Fig. 1-3 Format of Port 45H and color

As shown above, the upper 4 bits determine the Foreground color while
the lower 4 bits determine the Background color.

The color code formed by ‘Br’ ‘R’ ‘G’ ‘B’ is the same as that used in
bit 4—bit 7 of Port 44H (Backdrop color).

174

CHAPTER 2
DISPLAY MODES

TEXT MODE

TEXT MODE SCREEN MAP
GRAPHICS MODE

GRAPHICS MODE SCREEN MAP

175

DISPLAY MODES

Two text modes and six graphic modes are available for the LASER
350/LASER 500/LASER 700. However, LASER 350 users will notbe
able to invoke some graphics modes (GR 3, GR 4, GR 5) unless they
have a 64K RAM Expansion Module installed.

The following table summarizes the display modes:

Text Mode

Mode Column X Row Color

40 column 40 X 24 16 colors

80 column 80 X 24 2 out of 16 colors

GRAPHICS MODE

Display Memory Used Remarks

Mode Resolution Color
For LASER 350/500/700

GR@ 160 X 96 16 8K

GR1 160 X 192 16 (2 out of 16) 8K For LASER 350/500/700

GR2 320X 192 2 8K For LASER 350/500/700

GR3 160X 192 16 16K For LASER 350 with 64K
RAM/LASER 500/700

GR4 320X 192 16 (2 out of 16) 16K For LASER 350 with 64K
RAM/LASER 500/700

For LASER 350 with 64K

16K
RAM/LASER 500/700

GR5 640X 192 2

TEXT MODES

computer can display

In both 40 column and 80 column display, your
symbols and graphic

24 rows of alphanumeric characters, special

characters.
r or symbol is comprised of a character

Each alphanumeric characte

font of a 5 dots wide by 7 dots high matrix in a 8 X 8 dots grid. A two
dots wide space on the left and one dot wide space on the right is
used to keep adjacent words apart. Also a one dot wide space at bottom
of each character is used to keep each line apart from characters on a
lower row. Some graphic characters may use the entire 8 X 8 matrix

with no space left between the adjacent characters.

Upper and lower case characters for alphabets are available in both the
40 and 80 column display.
176

The inverse display is supported in both 40 and 80 columns, but the
hardware circuit does not support a flashing characte.r display. Any
character position, including the CURSOR position desnrt?d to produce
a flashing effect must be done via software, which writes a normal
character and an inverse character to that RAM location. RAM locat-
ions with MSB set will be displayed as INVERSE characters while those
with MSB reset will be displayed as NORMAL characters.

When in multicolor text display mode, the term "Inverse Characters"”
refers to the active dot matrix displayed in the Background color and
the remaining area of the character displayed in the Foreground color.
Please refer to the graphics mode command in the BAS]

C Programming
Manual for exact definition of Foreground/Background

color.

In 40 column text display, each character has its own Foreground/
Background color. Each color is programmable up to 16 different

colors. The Backdrop color is also pProgrammable to one of 16 different
colors.

For selection of the Backdrop color,

Please refer to the section on 1/0
Ports Usage, in particular Port 44H.

In 80 column text display, the active dis

can be programmed to 2 out of 16 possible colors which are the Fore-
ground/Background colors for the whole screen.

For selection of Foreground/Background colors, please refer to the
section on 1/O Ports usage, in particular, Port 45H.

play area of the entire screen

Table 2—1 shows the ASCI| Screen Chracters.

177

=2 a0 a0 000N OOR W N = o o
oA W N = O @
o
3
o
R R IR - R SR SR Y, S-S T ST S ST S Y- SR T ST N e
'nmUOUJ)>!.DOD\IO'>U1J>wN—\OQ
©® O|lM
FlEE]ReR[ECIEBEEFRR] € ©|5
-
=.
o =|°
EREREEEMAEEEEDREFINZ
P
Q
s [e - SO~ T gfg 3
£
v Vo A © O N O O d WN = Oy s D
JERE
>|g
'g_a
OZgr‘X‘-—IG)’T!mUOW>@§%m
[=) 3
[=
&
i —_ o =,
| > - N < XS < Cc-H®» 3P eg»gn
0 3 3 — X - — T a -~ o a o g o |6 ©
S O
o
B~ N < xzg<e~oav|g 2
o N
U}—‘G)
N
HEEfl el P EDEBEEEHR] g 8|S
°
=
® =|°
EREEEEAMNEEEBOREIN |E 5 |5
o & =
. <
(1]
~ " | 4 % — — -~ @ KL e # 1 — 2 3 8
o © (@]
5
SIRVAR AN © 0O N O O S WN = O|le = o
o o
o o ©
®
w
>
czz2r x < Iommoo®>» |8 3e
o N|F
3
5
— S vlee v
> N < X =S < c 4 v 3 0O g 8|z
o =
°=3—""“‘='¢°'°~®Q.°c'm,enr:rr3
o &
.z-,_--—-~<x5<:~w~.n'cgna§
e O

178

$1930BIBYD UBBIOS |1DQY |~ B|qe]

Fig. 2—2 shows all the alphanumeric character symbols and graphic
characters available in normal display.

! = $ % & «) + = ki
o 1 2 3 4 5 6 7 8 9 . < o8 > 2
e A B € D E F G H I J K L M N O
P Q@ R S T U Vv wW X Y Z [N | A _
+ a b ¢ d e f g h + 3 'k I m an o
P g9 r s t u v w x .y oz R | |
0 B B B ODGOBBH 0 @@ @ @ 30
M b EEH O O@@& 8 F BD EBES BB B

Fig 2—2 Text mode normal character set

TEXT MODE SCREEN MAP

The RAM locations used for text mode display can be chosen from two
different areas on the 256K Physical Address Space. If bit 3 of the byte
written to 1/O Port 44H is a ‘@', Display RAM will be at BANK 7.
Otherwise, the display RAM will be at BANK 3. Please refer to the

section on /O Port usage for details of these display area selections.
The same rule applies to the graphics modes.

For clarity, the most significant hexadecimal digit of the Physical
Address used on the screen map is omitted.

179

4 3y

N
(9]

»
>

H
@©

H
[=2]

S

o
N

D
o

w
m

w
(9]

w
>

w
@

w
(=2}

w
S

w
N

w
o

NN NNNNNNSD O a9 9 a9 o a

Moy / salAg 08

o
m

o
(g}

o
>

o
o

8

(=]
Y

o
N

dejy usaiog apoy Ixa] e£—g'Big

v 00

ovdd
ov3id
ova4d
0vod
ovad
ovv4d
0v6d
oved
0544
0534
0sa4
0524
0594
0Sv4d
0564
0584
0044
0034
00a4d
0004
0084
0ovd
0064

0084 Xx3H

3002 3002

"¥0102 3002

L0 00

10 08

1°0 ov

180

Each row of characters on the text screen requires 80 bytes of infor-
mation regardless of being 40 column or 80 columns. For instance,
F8PPH—F84FH (totally 80 bytes) is responsible for the text on the top
row of the screen. ;

For 40 column text display, which has its own set of Foreground/
Background colors in each character, even byte on the row contains the
character code and the odd byte that follows contains the cclor code.

The format is as follows:

RAM bit 7 6 5 4 3 2 1 0
Odd byte = Bri{R |G BJ BrifR|G (B
Foreground Background

The upper 4 bits determine the Foreground color while the lower 4 bits
determine the Background color, for that one character only.

The combination of Br, R, G, B to form 16 different colors is same as
that described in Chapter 1.

For 80 column text display, which only has one set of Foreground/
Background colors for the entire screen, each byte on the row will
represent the character code.

The actual Foreground/Background color for that screen would be
determined by the bit pattern written to Port 45H. For details refer
to the section on 1/0O Port usage.

GRAPHIC MODE SCREEN MAP

As in text mode display, RAM area for the graphics mode display can
be selectable on the 256K Physical Address Space. Bit 3 of Port 44H is

chosen for such purpose.:.

For clarity, the most significant hexadecimal digit of the Physical
Address used on the screen map is omitted.

In all graphics modes, the LSB, or the dot represented by the lowest
bit, is shifted out first, so that the corresponding dot will be shown
on the left hand side.

Fig. 2—4 is the screen map for the 16K graphics modes (GR3, GR4,
LiRg) 181

f

WWWwwwNnnmNNRNNNNSD S 9 G aaaa e o o
W ROAENOMOPRXOENOMODPOIDDPIROOMS > ®

aur / sa1Ag 08

8 8

(=3 =]
N ©

dejy usa1dg (SHD'PYUD ‘EHD) apo aydery y—z By

—

ovdd
ovad
ovad
0vdd
ovad
ovvd
0ve6d
0ved
0544
0534
0sd4d
0504
0584
0Sv4
0564
0584
0044
0034
0044
0004
0og4
0ov4d
0064
0084

X3H

gSW

887

182

0084
0004
0083
0003
008aQ
[thli]e]
0080
0002

Each display line is associated with 8@ bytes in the Display RAM.
These RAM data are interpreted differently in each graphics mode.

For GR3 (160H X 192V, 16 colors), each byte of fetched video data
represents the color of two adjacent dots, as follows:

MSB LSB
1 byte of
video data Br R G B Br R|G|B
in GR3
A\ =7 [N — o

Color code of second dot Color code of first dot

The upper 4 bits gives the color of second dot, i.e., dot on the right
hand side, and the lower 4 bits gives the color of first dot, i.e., doton

the left hand side. Therefore, a total of 8@ bytes let you use 16§
different dots on one display line.

For GR4 (320H X 192V, 2 out of 16 colors), each two bytes of infor-

mation respresents the color of 8 adjacent dots counting from the left
end.

Even byte:
MSB LSB

®= ’‘1'select Foreground color

@= ‘(' select Background color

Odd byte:

Br | R | G | B Br R|G|B

~ J . J
Y ~=

Color code of Foreground color Color code of Background color

183

The 8 adjacent dots that appear on the screen are a bit-image of the bit
pattern on the even byte, except that the LSB is shown on the right
hand side of the screen. Each logical ‘1’ bit would result in a Fore-
ground color dot. Similarly, each logical ‘@’ bit would result in a Back-
ground color dot.

Therefore, a total of 8 bytes gives you 4 X 8 = 32@ dots on one dis-
play line.

For GR 5 (640H X 192V 2 colors), each byte of data is a bit-image of
the 8 adjacent dots on the screen.

MSB LSB

Each byte: L ®

@ ='1'—Foreground color

@ ='—Background color

The Foreground/Background color of the entire screen is determined
by the byte of data written to I/O Port 45H. Each logical ‘1’ bit results
in a Foreground color dot. Each ‘@ bit results in a Background color

dot.

184

S 2 8 2 90 8000 0 a0 0000000O0O0O [=) 00 oo
M % R % R R R % ﬂ MOOD®POONDDPADWN-2OTMODO®P O® ® % a W QWO N = O
G— auI / sa1Ag oy —>

deyy usalag (49 ‘LYD) apoyy o1ydeds G—¢ b4

0Q44
0a34
0aa4d
0424
0484
oavd
0464
0as4d
8vdd
8v3d
8va4d
8vad
8vad
8VVvd
8V6d
\LE]
0844
0834
0804
0804
0884
08vd
0864
0884 X3H

04084

0584

0404

0504

0as3

0s83

0403

0503

8ved

8284

8v04

8ve3

8283

8v03

8203

0884

0084

0804

0004

0883

0083

0803

0003

186

Figure 2—5 is the screen map for 8K graphic modes (GR2, GR1)

Each display line is associated with 40 bytes of RAM data on the dis-
play area.

For GR1 (160H X 192V, 2 out of 16 colors), each two consecutive
bytes of information represents the color of one set of 8 adjacent dots
counting from the left end. The even byte is a bit image of the dot on
the screen, while the odd byte gives the Foreground/Background color

code of that set of 8 dots.

The situation is exactly the same as in GR4, except that a total of 40
bytes give rise to 20 X 8 = 160 dots on one display line.

186

ovdd
ov3ad
ovaid
0vod
ovad
ovvd
oved
oved
0§44
0634
0sa4
0524
0584
0Svd
0564
0584
0044
0034
0044
0094
00894
oov4d
0064

NNNNNNNNSD D @G G g a
moO D> SA_ENOMODDP OO HENO

& 3y

Moy / sa1Ag 08

o
m

o
(g}

o
>

o
@

[=3
[~

o
S

o
N

de\ usaiog 3po| Ixa] g—g'biyg

% 00

3002 3000

0084 X3H

¥0102 3000

Lo 00

‘190 08

1900y

187

Figure 2—6 is the screen map for 8K graphic mode GR@ (160H X 96V
16 colors)

This graphics mode is a little different from the others, despite the
fact that only 96 pixels are available in the vertical direction, there are
actually 192 discrete display lines on the active display area. The odd

number lines (1, 3, 5, 191) are in fact duplicated from the upper

lines (@, 2, 4, 190).

There are 80 bytes of video RAM data associated with each display line.
Each byte represents the color of two adjacent dots, as follows:

MSB LSB
1 byte of
Video data in Br R G B Br R G B
GR®
~ ——— = ~ —~— gl
Color code of second dot color code of first dot

The situation is similar to GR 3, except that this display line is duplicat-
ed on the line immediately below.

There, a total of 80 bytes give rise to 80 X 2 = 160 dots on one display

line.

188

CHAPTER 3

HARDWARE CONFIGURATION

SYSTEM OVERVIEW

Z-80A CPU

RAM SUBSYSTEM

ROM SUBSYSTEM

MASTER TIMING GENERATOR

INTEGRATED VIDEO, DYNAMIC RAM TIMING AND
/O PROCESSOR SUBSYSTEM

KEYBOARD

SOUND OQUTPUT

CASSETTE INTERFACE

VIDEO OUTPUT

RF OUTPUT

POWER ADAPTOR MODULE (LASER 350/500)

POWER SUPPLY UNIT (LASER 700)

FLOPPY DISK DRIVE CONTROLLER INTERFACE
(LASER 700)

CENTRONICS PRINTER INTERFACE (LASER 700)
EXPANSION BUS CONNECTORS

189

HARDWARE CONFIGURATION

SYSTEM OVERVIEW

Your computer is built around a Z-80A microprocessor chip. Surround-
ing this CPU is a number of other chips that help to complete the
system. These include a VLSI Gate Array which controls the overall
256K Address Space Configuration the system timing, Dynamic RAM
timing, ROM decoding. 1/0 decoding and video signal generation.
Other digital circuit include RAM and ROM chips, RAM address multi-
plexer, character generator ROM, latch and tri-state buffer chips.

Apart from these, there are linear circuits which perform the remaining
task of master clock generation, video signal processing, sound channel,
cassette input/output and power supply regulating circuit.

For the LASER 700 additional digital and linear circuits are built-in
incorporate the Power Supply unit, the Printer Interface and the

Floppy Disk Drive Controller.

Figure 3—1 shows the System Block Diagram

180

System Clock

RF

Ilv Signal

for TV

Composite

‘qv Video

Signal out

Generator
N ;
Address Bus Addiéis RAO Dynamic RAM
‘ M RA7 Subsystem
A0—-A15 MUX
Al4 F14M |RDO-RD7
A15 MAO
MA7
ROM RAS
CAS
cPU s lg——— romcs ok
ubsystern
Z-80A
RD7 N
Counter
CK — cPUCK Quzel m ¢
o]0} N DO
CGDO
D7 Data Bus)5 2 Character
Control Lines CGD7 v Generator
VLSI
Gate Array
Video
~N Video }— N
Control Bus Caniral Signals Signal Y RF
A Lines Processing Modulator
Sound
"N Keyboard Out [Iv Buzzer/Speaker
—{ Matirx
+9V +5V GND Css in —
_ _ =0 Cassette Cassette
Interface
Cass Out —{p>|

Power Supply

Unit
Power Adaptor

Fig.

3-1

SYSTEM BLOCK DIAGRAM

' Input/Output

' Sound
Output

The Z-80A CPU

The Z-80A CPU that your computer uses is a third-generation micro-
processor with exceptional computational power and a high system

throughput.

If features 16 address lines (64K Bytes of address directly), 8 data
lines, and an operating speed of up to 4MHz. The internal registers
contain 208 bits of read/write memory accessible to the programmer.
These registers include two sets of six general purpose registers which
may be used individually as either 8-bit registers or as 16-bit register
pairs. In addition, there are two sets of accumulator and flag registers.
A group of “Exchange’’ instructions allows either set to accessible to
the programmer. This microprocessor also contains a Stack Pointer,
Program Counter, and an Interrupt register. It requires only a single
+5V power source. All output signals are fully decoded and timed to

control external memory or peripheral circuits.

For details of the software programming model and hardware infor-
mation, please refer to the manufacturer’s data sheets.

ter (LASER 350/500/700) operates at
(3.6947MHz). This clock frequency is
generates a high frequency
ted Video/Input Output/

The Z-80A inside your compu
a clock frequency of 3.7MHz
derived from a crystal oscillator which
master clock which is processed in an integra
Dynamic RAM timing cirucitry.

The 3.7MHz clock frequency which Z-80A is running at, does not vary
with the screen display mode.

192

Fig 3—2 shows the interface to the Z-80A CPU.

cPuck —————————— P cLk A
vsyne - INT
System Address Bus
NMI
+vce
BUSREQ A15
RESET
RESET
HALT HALT Z-80A
RFSH RFSH cpPU
BUSACK BUSACK
M1 M1
+s5v an—
MREQ MREQ Do
IORQ 10RQ System Data Bus
WR WR
D7 l
RD RD |
WAIT —] WAIT :

Fig. 3—2 Z—-80A CPU Interface

As shown in the figure for Z-80A CPU Interfacing, the microprocessor
directly drives 16 lines of the System Address Bus and the 8 lines of the
System Data Bus. Other control lines input to, or output from the CPU
for system timing control, memory and Input/Output purposes.

Two major control lines are of interest to for Assembly Language
Programmers.

1. The INT (Interrupt Request) input to the CPU is connected to the
VSYNC (Vertical Synchronization) output of the VLS| Gate >
Array. This implies that the CPU would receive an Interrupt
Request for every vertical synchr period. Normally, the BASIC
Interpreter uses this interrupt service to read the keyboard, flash
the cursor and perform some internal operations. If you are doing ‘
some time critical task which can’t be interrupted, you should '
set the Interrupt mask flag in your program thus preventing the
VSYNC from Interrupting your program.

2. The WAIT (CPU WAIT) signal is connected to one of the outputs
in the VLSI Gate Array. This signal is implemented so as to insert
one WAIT state for every opcode fetch, memory read or memory
write cycle. As a result, any software loop written in the Assembly
Language Program must take into account this extra WAIT state.
The purpose of this WAIT state is to synchronize the memory
system with the video system.

193

e

The timing diagram for the CPU/Video system is shown in

Fig 3—3
F14M gigligligigigigligigigipipipigipligigigigigigiy
cv VIDEO crPy VIDEO CPU VTS
cuck LI L J 1 [L g N e
RAS l___f_'l___-'_—l 1 I L) B
CAS T 1 I 1 L. 1
AX 1 _ I 1 J L | 1 1 —i_
MREQ L N o, —
WAIT - I
2:;‘:"1’ {AGAH': X —~¢
WR
MREQ — —
WAIT 1 [_—
s ae-ats C ~————
RD 1 4r__._-——-
——R I
MREQ - L —
Read { WAIT L —
Cycle1 | FD - L —
Z.80 DATA Y v —
MREQ 1 o
g WAIT 1 f
Cycle 2 { RD 1 N il
Z.80 DATA T (. \C ——
(" MREQ L. —
WAIT N T —
c\:”y:::1 WA 1 . —
RAM W I
L zgopata —L g S
(" MREQ —1 Y semn
WAIT 1 — e
Write WR 1 I s
Cycle 2 RAM W
Z-80 DATA — ——

Fig.3—3 CPU/Video system

194

Fig 3—2 shows the interface to the Z-80A CPU.

cPUCK P cLk
vsyne <@ INT: |

RESET

| System Address Bus
vee NMI ‘
+
BUSREQ g

RESET

HALT HALT Z-80A
AFSH RFSH cry
BUSACK BUSACK
M1 M1
+5V ‘AM——
MREQ MREQ DO
I0RQ 1ona System Data Bus
WR WR
D7
RD RD
WAIT WAIT

Fig. 3—2 Z—-80A CPU Interface

As shown in the figure for Z-80A CPU Interfacing, the microprocessor
directly drives 16 lines of the System Address Bus and the 8 lines of the
System Data Bus. Other control lines input to, or output from the CPU
for system timing control, memory and Input/Output purposes.

Two major control lines are of interest to for Assembly Language
Programmers.

1.

The INT (Interrupt Request) input to the CPU is connected to the
VSYNC (Vertical Synchronization) output of the VLS| Gate
Array. This implies that the CPU would receive an Interrupt
Request for every vertical synchr period. Normally, the BASIC
Interpreter uses this interrupt service to read the keyboard, flash
the cursor and perform some internal operations. If you are doing
some time critical task which can’t be interrupted, you should
set the Interrupt mask flag in your program thus preventing the
VSYNC from Interrupting your program.

The WAIT (CPU WAIT) signal is connected to one of the outputs
in the VLSI Gate Array. This signal is implemented so as to insert
one WAIT state for every opcode fetch, memory read or memory
write cycle. As a result, any software loop written in the Assembly
Language Program must take into account this extra WAIT state.
The purpose of this WAIT state is to synchronize the memory
system with the video system.

193

The timing diagram for the CPU/Video system is shown in
Fig 3—3

F14m giglgiglglpipigipigipipipipipipipipipigigiy

cv VIDEO VIDEO cry VIDEO

cuck M LT | 1 I | S g SR
RAS | | 1 | 1 | 1 I 1 — L_

CAS | I/ L I 1 I 1 I L I L
AX ! 1 1 1 I 1 — L
MREQ 1 N I —
WAIT R N |
g::c‘:’: { Ag-A15 O O
RD - 1 T
WR
MREQ 1 1
WAIT T
2::;"; { AP-A15 OC >
RD 1 I
WR
MREQ [B
{— — —]
Cycle 1 RD - 1
Z-.80 DATA X) & .
MREQ — 1 I
i { WAIT | S —
Cycle 2 AD 1 I
Z-80 DATA X) G
(MREQ L I
WAIT - I
e L : goal
RAM W R |
_ z80DATA — % e
(" MREQ L I
WAIT | FES—— |
Write WR 1 I
Cycle2) pAMW LT
Z-80 DATA <)

Fig.3—3 CPU/Video system

194

The CPU CLOCK (CPUCK) is shown as a train of rectangular pulses
at a 50% duty cycle with frequency 3.7MHz and a period of 270nS.
CV is a signal used internally in the VLS| Gate Array to partition the
system timing into VIDEO and CPU cycles. When CV = 1, the RAM
data would be video data, otherwise CPU data.

The RAS/CAS and AX signal in the Dynamic RAM Subsystem are
shown as rectangular pulses running at the same frequency as the

CPU. Their edges are timed precisely to match the CPU/VIDEO and
RAM requirements.

A special technique is used in the VLSI Gate Array for synchronization
between CPU data timing and the multiplexed RAM timing. Whenever
a memory operation takes place, such as Opcode fetch, memory read or
memory write, the CPU pulls the MREQ line to a low logic level. This
informs the other units that a memory transaction will take place. The
VLSI Gate Array will respond to that signal by pulling the CPU WAIT
line to low logic level, thus inserting a WAIT cycle into every memory
operation. This WAIT signal will last for one CPU clock cycle and than

go back to high logic level, thus releasing the CPU to continue execut-
ion.

With-this “WAIT Cycle Insertion”, we can guarantee that all CPU data
are read at. the right phase of CV, and that all CPU data are written
corresponding to the CPU phase of CV. Internal circuitry of the Gate

Array takes care of latching up the data and releasing it at the correct
time.

RAM SUBSYSTEM

The RAM subsystem consists of the on-board RAM chips which may be
2 pieces of 16K X 4 bits Dynamic RAM (for LASER 350) or 8/16
pieces of 64K X 1 bit Dynamic RAM (for LASER 500/700). The VLSI

Gate Array , together with multiplexer chips LS257 serves to generate
the RAM timing.

195

PP —

MAO WA D
Lines A
N RAO
A0 Aca RAM
| nMux chips

—_— T
. RAS CAS RDO RD?

RDO

RD?

cPU Do
Data
Bus

o7

Fig. 3—4 RAM Subsystem block diagram

The RAM chips used in the computer are Dynamic RAM, i.e., they
must be refreshed at a certain rate to keep their data alive. Moreover,
their addresses are multiplexed as row address and column address.

Refreshing counter, RAS timing and CAS decoding are all done by the
internal circuitry of the VLS| Gate Array. Moreover, an enable signal
CVAM is output from the Gate Array to the Address Multiplexer, thus
allowing the: Gate Array to take control of the RAM during Video
cycles. RAM data is also fed to a Character Generator Latch which is
part of the video display circuit.

RAM chips with access time of 150ns are used. For details of the RAM
specifications, please refer to data sheets from the manufacturer.

ROM SUBSYSTEM

The ROM subsystem consists of a 32K Byte (256K bit) mask pro-
grammed Read—Only—Memory chip. Eariler products may use two
pieces of 27128 EPROM, together with decoding logic to divide the
32K Bytes into two 16K Bytes range.

196

< Data Bus

Add 8 32K Byte
ress us
ROM
V
romcs G2te £s
Array)
RD (Z.80A) OE

Fig. 3—5 ROM Subsystem

The decoding of the ROM is done inside the VLS| Gate Array, which
outputs the ROMCS (ROM SELECT) signal to the ROM CS input,
Data output from ROM is controlled via an RD (READ) signal from the
Z-80A CPU.

The ROM chip is a high speed 250ns access time device. For details on
ROM specifications, please refer to the manufacturer’s data sheets.

MASTER TIMING GENERATOR

The master timing generator inside your computer is basically a high
frequency crystal oscillator. The actual frequency of the crystal used in
your model may vary with different TV systems. The output from this
oscillator is further buffered and processed by digital circuits to pro-
duce a 14MHz digital pulse train. The VLSI Gate Array makes use of

this system clock to generate all related timing, CPU CLOCK and color
reference signal.

197

< Data Bus

Add 8 32K Byte
ress us
ROM
V
romcs G2te £s
Array)
RD (Z.80A) OE

Fig. 3—5 ROM Subsystem

The decoding of the ROM is done inside the VLS| Gate Array, which
outputs the ROMCS (ROM SELECT) signal to the ROM CS input,
Data output from ROM is controlled via an RD (READ) signal from the
Z-80A CPU.

The ROM chip is a high speed 250ns access time device. For details on
ROM specifications, please refer to the manufacturer’s data sheets.

MASTER TIMING GENERATOR

The master timing generator inside your computer is basically a high
frequency crystal oscillator. The actual frequency of the crystal used in
your model may vary with different TV systems. The output from this
oscillator is further buffered and processed by digital circuits to pro-
duce a 14MHz digital pulse train. The VLSI Gate Array makes use of

this system clock to generate all related timing, CPU CLOCK and color
reference signal.

197

TR Y TR .

i L e

T —

X—Tal

H VLSI

H] Gate

igh Frequenc
ncy Signal processed 1 o
D] and Bufferd =
- _%' F1am
oscillator
D —

Z2.80A ‘
CPUCK

Clock

Fig. 3—6 Master Timing Generator

THE INTEGRATED VIDEO, DYNAMIC R
PROCESSOR SUBSYSTEM AM TIMING AND 1/0

The integrated video, dynamic RAM timing and 1/O processor sub-
system consists of one custom designed VLS| Gate Array and external
chips including character generator ROM, TTL latch for character
pattern data and dynamic RAM address multiplexer chips.

DRAM ::Q(;
System Address —] RAM
¢ subsystem
Address MUX RDO — RD7
Bus
MA M
— Flam O=1mAz RAS
€ s <4—— CPUCK CAS
I RDO Q—_J
i
AX AD7 N\
CVAM

CAP LOCK

56 visi |———— sounp out
Data Bus Gata ———————CASSETTE OUT
o7 Array

I———‘L
-

oM e ROMCS
To]

Video
DT I emmm—————) Signais ————=8
Output || HS¥NC RAM data
’ [——— vsvyne
|[——— Chroma
Buffer LS244 RESET | CBURST Latch
cGoo |y
| Character
cGo? e
attern Character
Data
VIDEO COUNT.
NTER
ROM
Le

Fig. 3-7 Integrated Video, Dynamic Ram timing,1/O
Processor Subsystem Block Diagram

198

TR Y TR .

i L e

T —

X—Tal

H VLSI

H] Gate

igh Frequenc
ncy Signal processed 1 o
D] and Bufferd =
- _%' F1am
oscillator
D —

Z2.80A ‘
CPUCK

Clock

Fig. 3—6 Master Timing Generator

THE INTEGRATED VIDEO, DYNAMIC R
PROCESSOR SUBSYSTEM AM TIMING AND 1/0

The integrated video, dynamic RAM timing and 1/O processor sub-
system consists of one custom designed VLS| Gate Array and external
chips including character generator ROM, TTL latch for character
pattern data and dynamic RAM address multiplexer chips.

DRAM ::Q(;
System Address —] RAM
¢ subsystem
Address MUX RDO — RD7
Bus
MA M
— Flam O=1mAz RAS
€ s <4—— CPUCK CAS
I RDO Q—_J
i
AX AD7 N\
CVAM

CAP LOCK

56 visi |———— sounp out
Data Bus Gata ———————CASSETTE OUT
o7 Array

I———‘L
-

oM e ROMCS
To]

Video
DT I emmm—————) Signais ————=8
Output || HS¥NC RAM data
’ [——— vsvyne
|[——— Chroma
Buffer LS244 RESET | CBURST Latch
cGoo |y
| Character
cGo? e
attern Character
Data
VIDEO COUNT.
NTER
ROM
Le

Fig. 3-7 Integrated Video, Dynamic Ram timing,1/O
Processor Subsystem Block Diagram

198

The internal circuitry of the VLS| Gate Array contains the counter,
shift register, multiplexer and related logic functions necessary for the
video section in which graphics and text mode are handled. The text
mode character pattern data are supplied by an external character
generator ROM. Video signals output from the Gate Array are in digital
form as found in signals L, R, G, B, HSYNC, VSYNC, Chroma and
CBURST. These digital signals are combined to form the composite
video signal by a linear circuit which will be described in the coming

pages.

The dynamic RAM timing generation is another major function of this
VLSl Gate Array. The RAM timing is partitioned into the CPU phase
and VIDEO phase. The CPU can only access the RAM during the CPU
phase while video circuitry will take control of the RAM during the
VIDEO phase. Simultaneously, dynamic RAM refreshing is done in
the VIDEO phase. The Gate Array is also responsible for latching up
the RAM data and releasing it to the System Data Bus for CPU use.

System timing and the CPU clock generation forms another function of
this Gate Array. A 14MHz signal (F14M) is connected from the system
clock generator into the Gate Array. All system timing, and CPU
clock are based on this 14MHz signal. Moreover, an 17.73447MHz
signal is used for the color signal. The rest of the memory-mapped 1/0
decoding, /O ports decoding. ROM decoding and Memory Bank-
switching are done inside the VLS| Gate Array.

To summarize, this VLS| custom chip replaces hundreds of discrete
TTL I.C. chips that would be necessary in a conventional design.

The following table summarizes the pinout and describes the functions
of each pin on the VLSI Gate Array.

199

2423 321

25 O 80
26 79
VLSI
Gate Array
(Top view)
39 66
41 42 63 64

Fig. 3—8 Pin Assignment of VLSI Gate Array

200

PIN NAME DESCRIPTION
1 MA@ RAM address line
2 MA1 RAM address line
3 MA?2 RAM address line
4 MA3 RAM address line
5 MA4 RAM address line
6 MABS RAM address line
7 MAG RAM address line
8 MA7 RAM address line
9 CAS1 RAM control line
10 CAS4 RAM control line
11 CASSH RAM control line
12 Vss GND
13 RAS RAM control line
14 RAMW RAM control line
15 RD® RAM data line
16 RD1 RAM data line
17 RD2 RAM data line
18 RD3 RAM data line
19 RD4 RAM data line
20 RD5 RAM data line
21 RD6 RAM data line
22 RD7 RAM data line
23 F17M 17.73447 MHz input
24 F14M 14.77873 input
25 F3M 2.958MHz output
26 GT 1 = graphic mode
27 CGS character generator strobe
28 CGD®o character generator data line
29 CGD1 character generator data line
30 CGD2 character generator data line
31 CGD3 character generator data line
32 CGD4 character generator data line
33 VDD 5V
34 CGD5 character generator data line
35 CGD6 character generator data line
36 CGD7 character generator data line
37 VA Vertical address
38 VB Vertical address
39 VvVC Vertical address
40 ROMCS ROM chip select
41 CAPLK Cap lock LED indicator
42 BUZZER Buzzer output
43 10 10 select
44 A1b CPU address input
201 \

O e

PIN

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

NAME

Al4
WAIT
CPUCK
RD
WR
MREQ
IORQ
Vss

D7

D6

Db

D4

D3

.D2

D1

D@
BA17
BA16
BA15
BA14
AX
CVAM
TOPBK
GRESET
CASOUT
REMOTE
CBURST
CHROMA
VDD
FRSEL
VSYNC
HSYNC

O ®@r

DESCRIPTION

CPU address input
CPU control line

CPU clock

CPU control line

CPU control line

CPU control line

CPU control line
GND

CPU data line

CPU data line

CPU data line

CPU data line

CPU data line

CPU data line

CPU data line

CPU data line
Extended address line
Extended address line
Extended address line
Extended address line
ROW/COLUMN address multiplex
CPU/VDP address multiplex
Top bank

reset

cassette output
remote control output
color burst

color output

5V

50Hz/60Hz select
Vertical sync
horizontal sync
luminance

blue output

green output

red output

202

THE KEYBOARD

The keyboard of the LASER 350/LLASER 500/LASER 700 computers
are not encoded ASCII keyboards. They will not generate any code by
themselves, as is the case in most other personal computer keyboards.
Rather, they are read by the CPU (Central Processing Unit) and ASCII
encoding is done by the software program as part of the resident ROM
BASIC Interpreter.

The keyboard of the LASER 350 consists of a 8 row by 7 column Key
Matrix. The keyboard of LASER 500/LASER 700 consists of a 12 row
by 7 column Key Matrix.

The horizontal lines (rows) of the matrix are connected to the system
Address Bus lines via diodes.

The vertical lines (columns) of the matrix are normally tied to +5V
by resistors. These lines are also buffered and gated to the system data
Bus through a TTL 74LS 244 tri-state Buffer, which is controlled by
the 1/0O (pin 43) of the Gate Array (VLSI) chip.

When the CPU is reading the keyboard for any key enclosure, it will
send out a series of @ bit patterns on the system Address lines. If
any key is pressed, one of the lines KD@—KD6 would be tied to ‘@’
logic level. This would be reflected on the Data Bus when 10 (pin 43)
of Gate Array goes to the ‘@’ logic level. The CPU then reads the logic
level of KD@—KD6, compares it with the bit pattern on the Address
Bus, and determines which key was actually pressed.

If more than one key is found to be depressed, the CPU assigns a
different code in response to that key pressed. For instance the
or the key pressed with other keys will generate either the
upper case letter of the key, another symbol, or a special function.

If the CPU detects that any key has been depressed for a certain length

of time, say 1 second, it will continuously generate the associated code.
That is, all keys are auto-repeating.

Similarly, the [CAP LOCK| key of the LASER 500/700 is sensed by

software and toggles for each key pressed. The cap lock light indicates
a CAP LOCK condition and comes directly from the CAPLK (pin 41)
of the Gate Array.

203

The |[RESET| key of LASER 500/700 is not itself part of the key
matrix. It is not read by the keyboard polling software. Rather, it is a

hardware RESET line going directly to tthe Z-80 CPU. Each time the
user presses this key, the RESET line will be grounded and a hardware
RESET cycle is initiated. Refer to the Z-80 data sheets for details of
this RESET cycle.

Two jumper positions are present for the standard (English), French
and German keyboards. They are at the intersection points of (AD,
KD5) and (A5, KD4). In the French/Germany versions, one of the
intersection points would be permanently shorted. The CPU would be
able to detect this and then the keycode assignments of some keys
would be modified automatically. This allows three different language
versions to use the same keyboard polling software.

SOUND OUTPUT

Sound output is obtained by a pizeo-electric buzzer located on the
bottom cabinet of your computer. The buzzer's signal comes from your
computer. The buzzer’s signal comes from the Buzzer (pin 42) output
of the VLS| Gate Array. This is the same for the LASER 350/LASER
500/LASER 700.

This digital signal is further boosted by a simple transistor circuit as
shown here:

5V

BUZZER

<::;7 2K2
0

VLSI 42

G/A # ok 1402D
BUZZER

Fig. 3—9 Sound Output

204

CASSETTE INTERFACE

On the rear panel of your computer is a miniature stereo phone jack
into which you can plug a cassette cable and connect the other end to
a data recorder or audio cassette recorder. You computer will then be
able to save information onto a cassette tape and read it back again.

The circuitry, signal requirements and connector pinout assignment of
the LASER 350/LASER 500/LASER 700 are the same.

The cassette-out signal (digital) comes directly from VLS| Gate Array
pin 69 and is translated to suitable level and waveform by the circuit
shown in Fig. 3—10

1

96
CASQUT W——I I
N it

Fig. 3—10 Cassette output

The cassette in signal from the data cassette or audio cassette player is
transformed into digital level by the transistor circuit shown in Fig.
3—-11

To 10 (Pin 43) GA

5v

+5V

Data Bus <———

D7 8§

L1

LS
244

[T

Do

Fig. 3—11 Cassette in Circuit
205

This digital logic level signal is gated by a TTL 74LS244, which is also
used by the keyboard, before going into D7 (MSB) of the system data

bus.

When the CPU reads programs or data from cassette tape, the associated
location would be read out but only changes in D7 (MSB) of a byte
would be used as the cassette data.

CASSETTE INPUT SIGNAL

JUU UL 1

P-P 1.5V(min)

CASSETTE OUTPUT SIGNAL

1

=ML

277M8 277M
— K -3-— 555MS —ff— 555MS |
277MS

277Ms

p————— 1.66MS —_

Fig. 3—12 Cassette output signal and Cassette input signal

VIDEO OUTPUT

The internal circuitry of the VLSI Gate Array handles the generation
of video signal components in the form of digital signals. These signals
include HSYNC, VSYNC, L, R, G, B, CHROMA and CBURST.

208

YV VYV

< VIDEO
Composite
B
VIDEO Signal Output
CIRCUIT
HsYNC —P
Logical
—>
AND
VSYNC —>

CHROMA A—j

COLOR BURST

Fig. 3—13 Video Output Block Diagram

PAL and NTSC models of your computer are equipped with a COLOR
DEFEAT switch at the lower cabinet (not available to SECAM models).
Flipping this switch to the ON position will disconnect the CHROMA

and CBURST signal from the video summer, thus suppressing any color
display.

207

The role of the video output circuit is to combine all these video com-
ponents into the composite video signal that your Color/Black and
White monitor will accept. This composite signal has the following

specifications:

Composite signal, negative going sync
1VP—P Level on 75 OHM Load

Color Reference Signal
PAL System : 4.43MHz
NTSC System : 3.579MHz

The composite video signal is available at the standard RCA phono jack
on the rear panel of your computer. The sleeve of this jack is connected
to the common ground and the tip is connected to the actual video

output.
RF OUTPUT

RF output, which your home TV set accepts, is available at another
RCA phono jack on the rear panel of your computer. This RF signal
is a modulated version of the composite video signal mentioned on the

previous section.

Composite
Video signal RF RF signal
—> Modulator [output

The sleeve of the RCA phono jack is connected to the common ground
and the tip is connected to the RF modulator output.

THE POWER ADAPTOR MODULE FOR LASER 350/500

The DC power of the LASER 350/500 main unit is taken from an
external Power Adaptor Module via a power connector jack located
on the rear panel of the computer. Its pin assignments are as follows:

208

+'ve

— Ve

©

Fig 3—14 The pin assignments of the LASER 350/500 Power Adaptor

Module.

Power Adaptor Module Specifications :
Input Voltage : 120V / 220V / 240V
Output Voltage : 9V

Qutput Current : 1A

Power Consumption : 12VA

209

The +9V DC from the Power Adaptor Module is further regulated by a
7805 three terminal voltage regulator IC to produce a stable +5V.

POWER SW
ouT

+9vl OFVQONI 'N] 7805 H l Jj» +5V
I power T

| T T IT

Fig. 3—15 +5V Regulator

THE POWER SUPPLY UNIT FOR LASER 700.

The built-in Power Supply Unit of the LASER 700 is located in the left
side of the lower cabinet. It is a linera type power supply with the

following specifications as shown on the table.
There is also a +12V power outlet for an optional Floppy Disk Drive.

Specification of the Power Supply Unit

Line input voltage : 120V/220V/240V

Output voltages : 5V, 12V
Output current : 1.0A at 5V
1.0A at 12V

Power consumption : 28W

210

FLOPPY DISK CONTROLLER INTERFACE (LASER 700 only)

The Floppy Disk Controller Interface is a built-in feature of the LASER
700. It is also available for LASER 350/500 users as an optional ex-
pansion module.

This interface circuit is the same for LASER 350/500/700. It consists
of only one custom designed chip which handles address decoding, data
latch, parallel/serial conversion and the control signals for Floppy Disk
Drive stepper motor. This custom chip requires an external oscillator to
drive its on-chip oscillator. It is packaged in a 40 PIN dual in line
Package. The following is a list of the pinout assignments of the Floppy
Disk Controller Interface, with a description for each pin.

vss2 |1 —‘J 40 | vDD
XTAL1 00
XTAL2 01
XTAL 02
CLKO |5 03
CLK1 35 | WREQN
ENAIN ENA2N
RDATA WDATA
IORQN SSEL
WRN | 10 MSELN
RDN 30 | wpROT
AO RSTN
A1l D7

A2 D6

A3 15 D5

A4 25 | bL

AS D3

A6 D2

A7 D1
VSS 20 21 DO

The interface from your LASER 700 to your Floppy Disk Drive is
through two 20 pin sockets located on the rear panel. These sockets
also carry the +5V, +12V power required by the Floppy Disk Drive.

For LASER 350/500 users with the optional Floppy Disk Drive Inter-
face Module, a separate power adaptor module for the Floppy Disk
Drive is required.

211

The 1/0O Ports decoded and used by the Floppy Disk Controller Inter-
face circuit, with their functions are listed as follows:

10H
11H
12H
13 H

1/) Port

Read Function Write Function Remarks

X LATCH 1 Write only
X LATCH 2 Write only
STATUS X Read only

READ DATA WRITE DATA Read/Write

X= No application

Table 3—16 Description of /O nort for Floppy Disk Drive Interface

DESCRIPTION:

LATCH 1:

LATCH 2:

STATUS:

READ
DATA

WRITE
DATA

DP— D3 PHASE @ to PHASE 3 of direct stepper con-

D4
D5

D6
D7

trol
Drive enable master select, (active HI)
Drive select, @ for drive 1
1 for drive 2
Write request, (active LO)
Side select, 1 for side 1
0 for side

When write request set low, the controller will be in
writing 10 bit data mode. The controller will toggle
between 8 bit data mode and 1@ bit data mode on every

access of this 1/0 Port.

D@

Sense write protect (active Hi)

D1-D6 Not used

D7

When write, indicate buffer empty
When read, indicates data ready

D@—-D7 8 bit READ DATA from drive. This buffer

should be read when Data Ready Flag
(STATUS bit 7 HI) is set, to avoid data lost.

D@—-D7 8 bit WRITE DATA to drive. This buffer

should be written when buffer empty flag
(STATUS bit 7 HI) is set, to avoid data lost.

212

The 20 pin Disk Drive Cable connector has the following pin assign-

ments:

Pin no Description Pin no. Description

1 GND 11 +5V

2 00 12 +5V

3 GND 13 +12V

4 01 14 ENABLE

5 GND 15 +12V

6 02 16 RD DATA

7 GND 17 +12V

8 03 18 WR DATA

9 Side Select 19 +12V

10 WR REQ 20 WR PROT
2 / 20

O 00O OO0 OO0 9O OO0

O 00 OO0 O OO0 OO0

Vg

VA |

L

/

1

\19

CENTRONICS PRINTER INTERFACE (LASER 700 only)

Centronics Printer Interface is another built-in feature of the LASER
700. It is available to LASER 350/500 users as an optional expansion

module.

The printer interface hardware circuit is composed of simple decoding
logic and data latch. A number of 1/O Ports are used (0OH—OFH
hexadecimal). These Ports play different roles for read and write, as

listed below.

1/O Port Read/Write
OPH—QFH, Read
even no.

OOH—QFH, Write
odd no.

POH—QFH, Write
even no.

Function
Printer
Busy line

Printer
Strobe

Parallel

213

Remarks
Data line D@ Printer
Busy line

Printer strobe change
from ‘1" — ‘@’

8 bit data to printer

The connection for an optional printer cable is a-20 way edge con-
nector located at the right side of the cabinet on the LASER 700. The

pin assignments of this connector are as follows:

Pin no. Name Direction Description

1 ACK IN Printer acknowledge
(Not used)

2 BUSY IN From Printer. ‘HI’
indicates not yet ready

3 PR1 ouT data to printer

4 PR@ ouT data to printer

5 PR4 ouT data to printer

6 PR5 ouT data to printer

7 PR2 ouT data to printer

8 GND - signal ground

9 PR6 ouT

10 PR7 ouT

1 STROBE ouT active low pulse to strobe
data

12 NC

13 +5V

14 +5V

15 +5V

16 NC

17 NC

18 PR3 ouT data to printer

19 NC

20 NC

15 1

e
X ,/ (External view)
// o

20

16

EXPANSION BUS CONNECTORS

At the rear panel of your computer, there are one, or two PCB edge
connector into which you can plug in different Expansion Modules
such as Joystick, Light Pen, RS232 Interface etc.

214

Two different expansion bus connectors are available for LASER 350/
500 users. The first one, which we call P1, is a 30 pin connector you
would use for an optional Printer Interface Module. The same connect-
ion is used for Joystick and Light Pen Interface. P1 is also available to
LASER 700 users.

The other connector, located at the right corner on the back panel of
LASER 350/500, is a 44 pin connector which we call P2. This is
specially reserved for an optional Floppy Disk Drive Interface Module.
P2 is not available to LASER 700 users because the Floppy Disk Drive
Interface is already built inside the main unit of LASER 700. Instead,
the space for P2 is used for two Disk Drive cable connectors as describ-
ed in the previous pages.

Pin no. Name
1 N.C
2 N.C
3 N.C
4 +5V
5 IORQ
6 D3
7 D6 15 1
8 D2 AN
9 DO
10 Ab
11 A2 /
12 A6 [’
13 A3
14 WR
15 GND /
16 N.C
17 N.C 30 16
18 N.C .
19 g 4 P1 (External View)
20 N.C
21 D4
22 D5
23 D7
24 D1
25 RD
26 A1l
27 A4
28 AD
29 A7
30 GND
' 215

Pin no.

B(OGJ\IO)U'I-D-OJM—*

haahawwwmwwwwwwlo NN NNNNN
S WN - — -—
o O™ (o) I3, wWN o O o (o) B4)} wWN o o o o m w
~ S ~ H ~ S N -

Name
GND
RESET
A10
A9
A8
A7
A6
Ab
A4
A3
A2
Al
D2
D7
RFSH
M1
WAIT
NMI
RD
IORQ
+5V
GND
GND
Al1
A12
A13
BA14
BA15
CPUCK
D4
D3
D5
D6
TOPBK
AP

Do

D1
INT
HALT
MREQ
WR
BA16°
9V
BA17

22

44

/

216

P2 (External view)

\

23

CHAPTER 4

SOFTWARE ASPECTS

@ ROM Cartridge Entry Points
@ Bootstrapping of Floppy Disk
® Useful Subroutines

@ System Variables

® User interrupt routine

@ Basic text pointers

@ Screen Control Code

217

ROM CARTRIDGE ENTRY POINTS

As mentioned in the previous chapters, four 16K BANKS on the top
of the 256K Physical Address Space are reserved for Expansion ROM.
These expansion ROM can be organized as externally plug-in ROM
cartridges to hold application programs or games. Your computer is
able to recognize the presence of these ROM cartridges and execute
their program directly after power up. This is done by checking 4
signature bytes on some predefined locations.

In fact, the resident ROM is able to detect ROM cartridge at five areas
on the 256K Physical Address Space:

08000 H
30000 H
34000 H
38000 H
3C000 H

Where 08000 H is on BANK 2, i.e., Memory Mapped 1/O area.

The power up initialization routine will perform Bank-switching and
checks for four consecutive locations starting from the above listed
Address. If they match the patterns AAH, 55H, E7H and 18H, then
that 16K BANK will be brought into Z-80 Address Space 000PH—

3FFFH and the program will jump to 0004H.

For instance, if you want to place your own Assembly Language Pro-

m in a ROM cartridge and have an automatic “turnkey’’ system,

gra
place the four

just assemble your program starting at Q0004H, and
bytes AAH, 55H, E7H, 18H in the four starting locations.

The lower BANK ROM areas are checked first and thus, have higher
priority than the upper BANKS.

BOOTSTRAPPING OF FLOPPY DISKETTE

Besides having a turnkey system for ROM-based programs, your com-
puter is also capable of automatically booting the Floppy Diskette if

the Interface is installed.

Please note that ROM cartridges are always checked first and hence,
are of higher priority. For example, if you have ROM cartridge as well
as Floppy Disk Interface both installed, then the ROM cartrdige would
always be executed first without booting the diskette.

218

The resident ROM BASIC Interpreter checks for the existance of
Floppy Disk Interface by writting to, and reading from 1/0 Port 13H.
If such a Read/Write Port exists, the built-in software will read track @,
sector @ of the Floppy diskette, place the 256 bytes of data in RAM
location A2@0H (Z-80 Address Space) onwards, then jump to A200H.
Normally, A2@@H contains a further bootstrapping code to load the
rest of the operating system into main memory.

USEFUL SUBROUTINES

The following list contains some useful entry points to the ROM
subroutines which are part of the BASIC Interpreter. User may call
these subroutines via the BASIC command CALL, or directly executes
CALL from their own Assembly Language program.

Z-80 Address Subrotuine Name Description

0OBH CONOUT Outputs a character whose code
is placed in A Register, to the
text screen.
13H CONIN Inputs a character from the
: terminal (keyboard) and returns
the code in A Register.

23H ROLLOVER Scans the keyboard and returns
(user should put a code in A Register.
1/0 BANK IN
4000H—7FFFH
first)
2BH OUTDO Outputs a character whose code

is in A Register, to the text
screen, or printer, or cassette.
33H READSC Reads a sector from disk

Track no. in 8608H Sector no.
in 8609H Primary buffer pointer
in 860DH (reserve 342 byte)
Data buffer pointer in 860BH
(reserve 256 byte) Reads table
pointer in 860FH (at power up
the table is moved to RAM
A196H—A1FFH)

47H RDBYTE Reads a byte from cassette &
places code in A Register.
4AH WRBYTE Writes a byte to cassette, whose

code is placed in A Register.

219

-SYSTEM VARIABLES

Address
(HEX)
8ppp

8p@3

8006

80p9

8ppC

800F

812
8015—801A
8f1B—802E
8p2F

8030

8031

8032

8033

8p34

8@135

8036
8p37

8038

8@39

8@3A
8¢38—803C
8¢3D

803F

8041

8043
8p45—8149
814A—8287
8288
8289—838B
838C

838D

838E

838F

839¢

8391

8393

8394

8395

839D

Description

RST 8 jumps here

RST 10 jumps here

RST 18 jumps here

RST 20 jumps here

RST 28 jumps here

RST 3@ jumps here

INTERUPT ROUTINE EXIT POINT
reserved

USR function addresses

number of nulls

store eaten char when not CTRL-C
save error number

last line printer operation. @=LF
position of printer head

@ = output to screen

1 = output to printer

80 = output to cassette

last column number beyond which no more
comma field

default line printer width

line length

position of last comma column
reserved

supress output flag

reserved

top location to use for the stack
current line number

pointer to beginning of text

address of message to print (overflow)
reserved

krunch buffer

store a comma

keyboard buffer, type in stored here
reserved

in getting a pointer to a variable
variable type

store operator number

reserved

save text pointer used by CHRGET
saved token for a constant

saved constant type

saved constant value

highest location in memory

220

839F
83A1
83BF
83C@
83C2
83C4

83C9
83C8
83CA
83CC
83CD
83CE
83D9
83D1
83D2
83D4
83D6
83D8
83DA
83DC

83DE
83E@
83E2

83E3

83E7
83E9
83EB
83ED
83EF

83F1—84pA

8408
840D
840F —8472
8473

8475
8477
84DB

84DC
84DE
84DF

pointer at first free temp descriptor

storage for numtmp temp descriptors

string function build answer descriptor here
where string address is stored in 83BF

top of string free space

used to store the address of the end of string 1
arrays in garbage collection |
used by garbage collection

saved text pointer at end of “FOR’’ statement
data line number — remember for errors

flag whether subscripted variable allowed

flag whether we are doing input

reserved

zero if no line number converted ta pointer
flag to indicate autc command in

current line being inserted by auto

auto increment

place where text pointer are saved

stack saved here before execution

line number where last error occured

keeps current lipe for list

text pointer for use by “RESUME"’

line to goto when an error occurs

equals to one if an error trap routine execut-
ing

formula evaluator temp old line number (set
up by CTRL—C, STOP)

old text pointer

pointer to start of simple variable

pointer to beginning of array table

end of storage in use

POINTOR TO DATA, used by READ state-
ment

This table gives the deafult variable type for
each letter of the alphabet

previous definition block on stack

number of bytes in the active table

active parameter table

the pointer at the previous parameter block
(for garbage collection.)

size of parameter block being built

place to keep parameters being made

used by PTRGET to flag if PARM1 has been
search

stopping point for simple search

zero if no functions active

garbage collection temp

221

84E1 count of active function

84E3 flag telling whether input is scanning first or
second time. @ if first

84E4 save text pointer at start of next

84E6 @ is ‘FOR’ is using NEXT code

84E7 use to store the start value of the loop
variable

- 84EB the line number during scan for ‘NEXT’

84ED ¢ = OPTION BASE 0
1= OPTION BASE 1

84EE NON-zero if option base scanned

B84EF—8515 reserved

8516 pointer to end line to delete

8518 pointer to start line to delete

851A—851C reserved
value of first ‘swap’ variable stored here

851D

8525 @ = no trace in progress
8527—852F floating point accumulator
8530 overflow print flag

8531 place to store overflow flag
8532 flag to force fixed output
8534—8584 used by math package
8585 RAM EXIT for COMMON
8588 RAM EXIT for CHAIN
8588 RAM EXIT for SYSTEM
858E RAM EXIT for OPEN

8591 RAM EXIT for FIELD
8994 RAM EXIT for GET

8997 RAM EXIT for PUT

859A RAM EXIT for CLOSE
859D RAM EXIT for LOAD
85A0 RAM EXIT for MERGE
85A3 RAM EXIT for FILES
85A6 RAM EXIT for NAME
85A9 RAM EXIT for KILL
85AC RAM EXIT for LSET
85AF RAM EXIT for RSET
85B2 RAM EXIT for SAVE

85B5 RAM EXIT for RESET
85B8 RAM EXIT for PAINT
85BB RAM EXIT for EOF

85BE RAM EXIT for LOC

85C1 RAM EXIT for LOF

85C4 RAM EXIT from Execution phase
85C7 RAM EXIT from Screen driver
85CA RAM EXIT from keyboard driver
85CD RAM EXIT from RUN
85D0 RAM EXIT from COPY

222

85D3—-85E1
85E2
85E4
85E5
85E6
85E7
85E8
85E9
85EA
85EC
85EE
85FQ
85F1-85F4
85F5
85F6
85F7
85F9
85FA—-85FC
85FD

85FE
85FF

8601
8602—8603
8604

8605

8606

8607

8608

8609

860A

860B

860D

860F

8611

8612

8613

8614

8616
8617—861C
861D

861F

863C
863E
863F
8650
8662
8664

Reserve

cursor address

top of window

bottom of window

left margin of window

width of window

row number of cursor

column number of cursor
pointer to un-shift key code table
pointer to shift key code table
pointer to control key code table
buffer to hold key pressed
reserved

auto-repeat delay

auto-repeat period

reserved

image of peripheral register
reserved

1 =80 coulmn

@ = 49 column

graphic mode

max width of graphic mode
max height of graphic mode
reserved

copy of character covered by cursor
address curosr flag

cursor flash counter

flash period

seek track

sector

current track number
pointer to disk buffer
primary buffer pointer

read table vector

retry counter

controller latch image

disk drive stepper phase image
graphic cursor X-coordinate
graphic cursor Y-coordinate
used by draw line routine
reset routine address

warm start signature byte

= reset high address + low address +E1H
check sum of tape

length of file name

tape filename

temp area for tape filename
used by tape routine

location of video bank

223

8665 image of 1/0O Port 46H

8666 image of I/O Port 41H
8667 image of 1/0 Port 42H
8668 image of 1/0 Port 43H
8669 image of 1/0 Port 44H
866A image of 1/0 Port 45H
8668 used by tape routine

866D—8684 screen line status
8685—8992 disk buffer

USER INTERRUPT ROUTINE

every 20ms. The interrupt service
k, and call an exit point at location
n is initialized to RET. The user

ice routine if he wish to.

The CPU will be interrupted for
routine will push all registers to stac
8012H. When power up this locatio
can modify this vector to jump to his serv

224

BASIC TEXT POINTERS

The BASIC interpreter arrange the memory as follows:

ﬂ]«- TOPMEM (803DH)
Stack
~— MEMSIZ (839DH)
String
—<— FRETOP (83C2H)
free space
—— STREND (83EDH)
array
variable
<— ARYTAB (83EBH)
simple
variables
-~ VARTAB(83E9H)
BASIC
program
<—TXTTAB (8041H)
system
variable
800pH

The system variables occupy 8@@@H to 8993H. They are used by the
interpreter as scratch pad.

The starting address of the BASIC program is pointed by TXTTAB
(8041H and 8042H). The normal value is 8995H. The ending address
is pointed to by VARTAB (83E9H). Whenever you enter a new BASIC
statement, the program will grow upward.

Simple variables are stored behind the BASIC program and followed
by array variables. The starting addresses are pointed to by VARTAB
and ARYTAB respectively. String variable are stored differently. They
grow downward from the top of free memory. The bottom of string
space is pointed to by FRETOP.

The top of RAM is pointed to by TOPMEM. 512 byte are then reserved
as stack for the CPU. End of stack is pointed to by MEMSIZ.

SCREEN CONTROL CODES

The following control codes are supported by the screen driver. The
user can use the PRINT CHRS$ statement to send these code to the

screen.
225

DECIMAL

7
8
9
10
13
24
25
27

28
29
30
31
127

HEXADECIMAL

7H
8H
9H
OAH
ODH
18H
19H
1BH

1CH
1DH
1EH
1FH
7FH

226

FUNCTION

ring the buzzer

back space

TAB

line feed

carriage return

cursor up one line
cursor right

escape (please refer to
chapters on escape —
sequences for details)
home cursor

cursor down one line
clear to end of line
clear whole screen
rubout

CHAPTER 5

SYSTEM MONITOR

@ System Monitor Overview
@ Entering and Leaving the monitor
@ Monitor Commands—

Fill/Change Memory Content
Display Memory Content
Transfer range of Memory
Display Input Port Value

Send Data to output Port

Save Memory to Cassette Tape
Read Cassette Tape into Memory
Disassemble Listing of Memory
Assemble Mnemonic to Memory
Execute Maching Language Program
Display and Edit CPU Registers
Toggle Printer Output
Hexadecimal Addition
Hexadecimal Subtraction

Leave System Monitor

TIOIXONrIsOoO— 42~

o |

227

SYSTEM MONITOR OVERVIEW

Apart from writing and running BASIC programs, the BASIC Inter-
preter of your computer also provides with a powerful System Monitor.
The System Monitor is in itself a program implementing a set of very
fundamental commands. It allows you to do very low level jobs such
as examine memory locations, change memory location. On the other
hand, these commands are powerful enough to take control of your

computer. So take great care when using these commands or you will

lost your valuable program.

The System Monitor provides you with a number of useful features,
such as examining and altering memory locations, moving blocks of

memory quickly, disassembled listing of machine language program,

direct access of 1/0 Ports, examine and change CPU registers content,

execute machine level program and lots more.

r assumes that you have some background knowledge of
ticular, the Z-80 assembly langu-

Id be used throughout.

This chapte
machine language programming, in par
age program. Hexadecimal notations wou

If you are not familiar with these, please refer to relevant text before

reading this chapter.

ENTERING AND LEAVING THE SYSTEM MONITOR
To enter the system monitor, type:

MON

sign < MON >which indicates that you are
ystem Monitor. Once you have typed MON,
hing you typed in thereafter are inter-
BASIC commands are not accepted

There is a special prompt
under the control of the S
your computer assume that anyt

preter as monitor commands.
until you instruct the computer to go back to BASIC level.

To leave the System Monitor and go back to BASIC command level,

type:

[a] [RETURN]

Pressing the [RESET| button on LASER 500/700 will normally leave
the System Monitor and get you back in BASIC.

228

MONITOR COMMAND

Monitor commands availabie in your computer are single letter com-
mands preceeded and followed by arguments and parameters.

You have to follow the exact syntax for each Monitor command.
Extra spaces, commas or full stop are not allowed. If you typfe in any-
thing that the Monitor cannot understand, then the Monitor will
response by printing a message “??"’ on the next line to tell you that
the command was not accepted.

The System Monitor allows for multiple commands input on a single
line, provided that the commands are seperated by at least one space
from the adjacent commands. Each command will be executed in turn
from left to right. However, if command syntax error is encountered

at the middle of the line, a ““??" would be printed and all subsequent
commands on the right side will be ignored.

When you are under the control of the S

editing keys, CUROSR KEYS, Escape Seq
you.

ystem Monitor, the screen
uence are still available to

The following notation would be used in the discussion of Monitor

commands:

NOTATION MEANING

bb one byte (8 bits) value
ee } expressed in two

ss Hexadecimal digits

SSSS two bytes (16 bits) value
eeee } expressed in four

dddd

Hexadecimal digits

CHANGE MEMORY CONTENT

ssss : bb bb bb...........

The colon (:) command is for changing memory content from address
ssss onwards. The values to be placed in memory are entered on the
right of the colon, each separated from the next one by a space
character. These values would be allocated in the order that they are
entered.

229

Example: To place Hexadecimal value @@, @1, @2 into memory locat-
ion AGOOH, AGD1H, AOD2H.

ADQO : 00 01 02

FILE MEMORY CONTENT

ssss, eeee : bb

The colon (:) command can be extended to fill a range of memory
with the same value as their content. With the above format. Hex-
adecimal address ssss through eeee inclusively are filled with the same

hexadecimal byte content given by bb.

Example: To fill value of 00 into memory locations AOOQH through
AFFFH (4K byte)

AQ0O, AFFF : 00

DISPLAY MEMORY CONTENT

ssss M

The M command is for displaying memory content of address ssss on
to the screen. The memory content will be converted into 2 digit
hexadecimal number and displayed on the next line. The address and
a colon would also be outputed along with that value.

Example: To display the content of memory address ABCDH.

ABCDM

For instant, if ABCDH contains a 02, the following line
would be outputed by your computer.

ABCD : 02

230

DISPLAY A RANGE OF MEMORY CONTENT

ssss, eeee M

The M command can be extended to display a range of memory con-
tent from Hexadecimal address ssss through eeee inclusive. Similarly,
the memory content are converted into a series of 2 digit hexadecimal
numbers and displayed on the next line onwards.

For the sake of clarity, the System Monitor will arrange the display
so that the first byte displayed will have address ending with a digit of
‘D" or ‘8’. 80 columns text mode allows for sixteen bytes maximum on
a line and 40 column text mode allows eight bytes on a line.

Example: To display memory content 200EH through 202FH.

200E, 202FM

The screen would show the data similar to the following form:

200E : 00 14
2010 : 10 2F 4C 2B 5D 04 08 17
2018 : 43 26 5D 48 12 30 02 15

40 column is assumed in the above example. If 80 column were used,
the second and third line would be combined to one line containing
sixteen bytes.

You will soon find the screen editing feature of the computer very
helpful in modifying memory contents. Just display the range of the
memory to be modified, then move the cursor to any byte you want to
change, type in the new value and press ;

TRANSFER A RANGE OF MEMORY

ssss, eeee, dddd T

The T command is for transferring a range of memory data from source
starting address ssss through source ending address eeee inclusive, to
destination address dddd. This ‘‘transfer’’ process is actually a “‘copy’
process. The data content at the source is normally not affected, except
when the source and destination area overlapps.

231

Example: To transfer memory content 20Q@H through 2FFFH to
destination starting at AGQQH.

2000, 2FFF, AGOO T

The transfer process may take certain time (1 to 2 second)
to finish if the the block size is large. So be patient when
your computer is performing memory transfer.

DISPLAY INPUT PORT VALUE

ss |

The | command is for examing the byte value developed at input port
given by hexadecimal number ss. The 8 bit value is converted into a

2 digit hexadecimal number and displayed on the next line. Format is
similar to displaying of a single memory content.

In order to have meaningful result, users must ensure that their hard-
ware circuitry is properly set up for that Input Port.

Example: To examine the data developed at Input Port 20H,

20 1

Output from the screen may be:

20 : FF

DISPLAY A NUMBER OF INPUT PORT VALUE

ss, ee |

The | command is extended to displaying a number of Input Ports all
together, from Port number ss to ee inclusively. The 8 bit value deve-
loped at these Input Ports are converted to a series of 2 digit hex-
adecimal numbers and displayed on the next lines. Format is similar

to displaying of a range of memory content.

232

Example: To display the data developed at Input Ports 2AH through
3BH,

2A,3B |

The screen would probably show data in the following
form.

2A:00 @1 @3 DF FF
30:12 14 56 38 2D 41 32 45
38:9F @4 53 CD

SEND DATA TO OUTPUT PORTS

ssO bb bb bb....

This O command is for sending a series of 8 bit data to Output Ports
.starting at hexadecimal number ss and then ss+ 1,ss+ 2 onwards.
Each byte of data is separated from the adjacent one by at least one

space.

Similar to the case of Input Ports, users must assure that their hard-
ware circuitry is properly set up for the Output Ports.

To send five bytes of data to Output Ports 5@H, 51H,

Example:
52H, 53H, 54H, with values 00, 01, 02, 03, 04.

50 O 00 01 02 03 04

SAVE A RANGE OF MEMORY TO CASSETTE TAPE

ssss, eeee W ““filename’’

The W command is for saving a range of memory starting from address
ssss through eeee to Cassette Tape and assign the name “FILENAME"
for that cassette file. The file is treated as Binary file, which means a
binary image of memory.

Before pressing the | RETURN | key while typing the above line, you

must have started the cassette running in RECORD mode and adjust-
ed input control (if any) to a suitable level. Refer to the chapter on
using a cassette for storage if any problem should arise.

233

Example: To save a range of memory from AGQ@H through AFFFH
using filename “TEST",

ADQP, AFFF W “TEST"

Be patient when your computer is busy generating the
cassette signal out.

To escape from writing to Cassette, press Control-C.

READ CASSETTE TAPE BINARY FILE AND PLACE IN MEMORY

ssss, eeee R ““filename’’

The R command is for reading a cassette tape file and place the data
in memory address ssss through eeee. The cassette file is accepted as
Binary file no matter how it was saved onto the cassette tape. The
System Monitor would also wait for the filename given by the express-
ion “filename”’ before loading the data into specified memory lo-
cations.

Before pressing the |[RETURN| key while typing the above line, you

should have started the cassette tape running in PLAY mode and out-
put adjusted to a suitable level. If any error should arise during the
loading process, the same error message would be issued as you were
loading BASIC program from cassette.

Example: To load the cassette file TEST into memory location
AQODOOH through AFFFH,

AOPOH, AFFF R “TEST"

Please be patient when your computer is reading data from
the cassette tape.

To leave cassette reading, press Control-C.

Note: If the starting and ending addresses are omitted, the file
will be loaded to where it was saved.

The file saved by the monitor has the binary extension. If
it is loaded under BASIC . If will be executed automatical-

ly.

234

DISASSEMBLE LISTING

SSSS L

The L command is for obtaining disassemble listing of memory content
starting from location ssss. These memory content will be treated as
Z-80 instructions nomatter what nature they are. Therefore, the dis-
assembled listing may not be meaningful to you.

The address, content, the disassembled opcode and operand would
be listed starting from the next line until they fills one screen.

Example: To disassemble memory starting from AG@OH,
AGQO L
The screen would be filled with address value, memory

content and disassembled opcode mnemonic similar to
following format:

A000 :3A 10 EO LD A, (E010)
A003 : 3A 00 EO LD A, (E000)
AQ06 : B7 OR A

A007 : F2 03 A0 JP P, AOD3
AQOA : 47 LD B, A
AQOB : 3A 10 EO LD A, (E010)
AOOE : 78 LD A, B
AOOF : E6 7F AND 7F
A011: EF 0D CP 0D
A013:C2 03 A0 JP NZ, A003
Address Content Opcode Operand

ssss, eeee L

The L command can be extended to disassemble a range of memory
from ssss through eeee.

ASSEMBLE NMEMONIC

ssss Z

235

The Z command is for assembling Z-80 instruction mnemonic and
place the object code starting from location ssss onwards. This allows
the user to write simple, short assembly language program directly into
your computer’s memory. However, this is not a means to write large
assembly language program. Standard assemblers are recommanded in

that case.

While entering the Z-80 instruction mnemonics code, you must
follow exactly the assembler syntax requirements. For instance, the
opcode field must be seperated from the operand field by at least one

space.

After you have entered one line of instruction mnemonics and the re-
turn key is pressed, the System Monitor will do the assemble for that
line. Address for that instruction is displayed, followed by hexadecimal
content and then your instruction mnemonic. The cursor will go to
the next line and wait for further input of instruction. The process will
repeat for every line that you type in, until you leave Assemble mode
by pressing control-C. Consecutive address will be assigned for sub-

sequent instructions.

Example: To enter the instruction LD B, A and place the assembled
code starting from address AQ@OH.

A0PDZ (You type in)

LD B, A (You type in)

AGQ)Q_) : 78 LD B,A (computer response)

Control-C (To leave assemble)
Note: Hexadecimal number starting with ‘A’ to ‘F’ should be

preceded by a ‘0’. For example, IN A, (C) and IN A, (0C)
will be treated as different instruction.

START PROGRAM EXECUTION

ssss G

The G command allows the user to execute a Z-80 machine language
program starting at location ssss. Users must ensure for themselves that
meaningful code are already placed in the assoicated memory address.
Otherwise, your computer may go to a dead lock condition. Only
System Reset or power down can bring you back the control.

236

The System Monitor treats your machine language program as sub-
routine when the G command is executed. So you will usually go back
to Monitor command level if the last instruction in your program is a
RET (Return from Subroutine), provided that the stack is in proper
condition.

Example: To start exectuion at memory location ABOQH in which
you have placed with a meaningful program,

ADDPD G

DISPLAY AND EDIT CPU INTERNAL REGISTERES

[

The X command allows the user to examine and edit the Z-80 CPU
internal registers. These new values are not immediately loaded into the
CPU, but they will be put aside in RAM locations and loaded into CPU
when the G (Execute Program) is issued.

When the X command is issued, the System Monitor response by dis-
playing the currently assigned CPU register values in the order of AF,
BC, DE SP. Then you are allowed to type in the new values, pre-
ceed with the colon (:) sign, also in the same order. These new value
will be used in the next G command.

X (You typed in)
AF=0000 BC=0000 DE=1111 HL=1111 IX=1111
1Y=0000 SP=0000 (Computer response)
:FF 09 23 (You typed in)
X (You typed in)
AF=00FF BC=00 23 DE=1111 HL=1111 IX=1111
1Y=0000 - SP=0000 (Computer response)

237

SEND OUTPUT TO PRINTER/DISABLE PRINTER OUTPUT

P

The P command allows the user to obtain printed output at the printer
when running under the control of the System Monitor. After P com-
mand is first issued, anything displayed on the screen will be sent to
the printer as well. This P command also acts as a toggle switch for
disabling the Printer output , that is, the next time you issue P, the
Printer output will be stopped. You have to ensure for yourself that a
printer is properly installed for your computer.

When you leave the Sytem Monitor via the Q command or by
pressing RESET, the printer output will be disabled automatically
nomatter whether it has been turned on by P command or not.

ADDITION SUBTRACTION OF FOUR DIGIT HEXADECIMAL
NUMBERS

Addition : ssss, eeee +
Substraction : ssss, eeee —

The command +, — are implemented to allow for simple arithmetic
between two numbers expressed in four digit hexadecimal form. The
value represented by ssss and eeee are added, result also represented
in four digit hexadecimal form. Any overflow or carry is neglected. The
result is displayed on the next line which follows the command line.
With the above format, eeee is added to ssss, and eeee is subtracted

from ssss.

These hexadecimal arithmetic are usually used for calculating JUMP
Address offsets while you are assembling your machine language pro-
gram.

Example: To add/subtract two numbers
205FH, 014AH

295F , 014A +
21A9

205F, 014A —
1F15

238

239

APPENDIX

2=

CSTIOMMOO®R

BASIC ERROR MESSAGE & ERROR CODES
DERIVED MATHEMATICAL FUNCTIONS
ASCII CHARACTER CODE CHART

ESCAPE SEQUENCE FUNCTIONS

KEY CODE ASSIGNMENT

DEFAULT FUNCTION KEY DEFINITION
GRAPHIC CHARACTER SET

BASIC TOKEN TABLE

COLOR CODE

SUMMARY OF BASIC COMMANDS AND

FUNCTION
SUMMARY OF SYSTEM MONITOR COMMAND

CIRCUIT SCHEMATIC DIAGRAM
VARIATION BETWEEN DIFFERENT MODELS

BASIC APPLICATION PROGRAMS

240

241

APPENDIX A

BASIC ERROR MESSAGE AND
ERROR CODES

242

CODE

NF

SN

RG

oD

FC

NUMBER

1

MESSAGE

NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

Syntax error

A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, a misspelled com-
mand or statement, incorrect punctuation,
etc.)

Return without GOSUB

A RETURN statement is encountered for
which there is no previous, unmatched
GOSUB statement.

Out of data

A READ statement is executed when there
are no DATA statements with unread data
remaining in the program.

Illegal function call

A parameter that is out of range is passed
to a math or string function. An FC error
may also occur as the result of:

1. a negative or unreasonably large sub-
script

2. anegative or zero argument with LOG

3. anegative argument to SQR

4. a negative mantissa with a non-integer
exponent '

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MID$, WAIT,
LEFTS$, RIGHTS, INP, OUT.
PEEK, POKE, TAB, SPC, STRINGS,
SPACES$, INSTR, or ON ... GOTO.

243

ov

oM

UL

BS

DD

/0

10

11

12

Overflow

The result of a calculation is too large to be
represented in BASIC number format. If
underflow occurs, the result is zero and
execution continues without an error.

Out of memory

A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line number
A line reference in a GOTO, GOSUB, IF ...
THEN . .. ELSE or DELETE is to a non-

existent line.

Subscript out of range
An array element is referenced either with a

subscript that is outside the dimensions
of the array, or with the wrong number of
subscripts.

Duplicate Definition

Two DIM statements are given for the same
array, or a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Division by zero

A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution,
and execution continues.

Illegal direct
A statement that is illegal in direct mode is
entered as a direct mode command.

244

™

oS

LS

ST

CN

UF

13

14

15

16

17

18

19

20

Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argu-
ment or vice versa.

Out of string space

String variables have caused BASIC to
exceed the amount of free memory re-
maining. BASIC will allocate string space
dynamically, until it runs out of memory.

String too long
An attempt is made to create a string more
than 255 characters long.

String formula too complex

A string expression is too long or too com-
plex. The expression should be broken into
smaller expressions.

Can’t continue
An attempt is made to continue a program
that:

1. has halted due to an error,
has been modified during a break in
execution, or

3. does not exist.

Undefined user function
A USR function is called before the fupction
definition (DEF statement) is given.

No RESUME
An error trapping routine is entered but
contains no RESUME statement.

RESUME without error
A RESUME statement is encountered before
an error trapping routine is entered.

245

21

22

23

26

29

30

Unprintable error
An error message is not available for the

error condition which exists. This is usually
caused by an ERROR with an undefined

error code.

Missing operand
An expression contains an operator with

no operand following it.

Line buffer overflow
An attempt is made to-input a line that has

too many characters.

FOR without NEXT
A FOR was encountered without a matching

NEXT.

WHILE without WEND
A WHILE statement does not have a mat-

ching WEND.
WEND without WHILE

A WEND was encountered without a
matching WHILE.

246

APPENDIX B

DERIVED MATHEMATICAL
FUNCTIONS

247

Functions that are not intrinsic to the BASIC interpreter may be cal-

culated as follows:
FUNCTION

SECANT

COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE

HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

EQUIVALENT FUNCTION

SEC(X)=1/COS(X)
CSC(X)=1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(—X*
X+1))
ARCCOS(X)=—ATN(X/SQR
(—=X*X+1))+1.5708
ARCSEC(X)=ATN(X/SQR (X*
X—1))+(SGN(X)—1)* 1.5708
ARCCSC(X)=ATN(X/SQR (xX*
X—1))+(SGN(X)—1)*1.5708
ARCCOT(X)=ATN(X)+1.5708
SINH(X)=(EXP(X)—EXP(—X))

/2

COSH (X)=(EXP(X)+EXP(—X))
/2

TANH (X)=EXP(—X)/(EXP(X)+
EXP(—X))*2+1

SECH (X)=2/(EXP(X)+EXP(—

X))
CSCH (X)=2/(EXP(X)—EXP(—

X))
COTH (X)=EXP(=X)/(EXP(X)—

EXP(=X))*2+1
ARCSINH (X)=LOG(*X+1))

ARCCOSH (X)=LOG(
X*X-1))

INVERSE HYPERBOLIC TANGENT ARCTANH (X)=LOG((1+X)/(1

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC

COSECANT
INVERSE HYPERBOLIC CO-

TANGENT

—X))/2
ARCSECH(X)=LOG((SQR(—X
*X+1)+1)/X)

ARCCSCH (X)=LOG((SGN(X)
SQR(X*X+1)+1)/X
ARCCOTH (X)=LOG((X+1)/(X
-1))/2

*

248

249

APPENDIX C

ASCIl CHARACTER CODE, CHART

250

ASCII| Character Table

Decimal:

Hexadecimal:

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$SA
$B
$C
$D
SE
SF

128 144 160 176 192 208 224 240
$80 S$90 SAO0 $BO S$CO $DO SEO $FO
nul dle 0 @ P P
soh dc1 ! 1 A Q a q
stx dc?2 2 B R b r
etx dc3 = 3 C S c s
eot dc4 S 4 D T d t
enq nak % 5 E U e u
ack syn & 6 F \Y f v
bel etb ! 7 G W g9 w
bs can | 8 H X h X
ht em) 9 | Y i y

I sub * J Zz j F4

vt esc + K [k {

ff fs < L / | I

cr gs — = ™M] m }
50 rs > N ° n ~

si us / ? (6] _ o rub

251

APPENDIX D

ESCAPE SEQUENCE FUNCTION

252

E£SCAPE SEQUENCE FUNCTION

The screen driver of the BASIC Interpreter in your computer is able to
perform some special functions via the Escape Sequences. These
functions might be invoked by directly typing in from the keyboard, or
by the PRINT command.

The following table lists the code to be followed by the ESC code, and
the function performed.

Code followed by Function

ESC (Hex.)
AQH Clear to end of page
-41H Set normal text mode
42H Set inverse text mode
A1H Address cursor
43H Set keyboard silent
44H Set keyboard to beep
A2H Invoke 80 column display
A3H Invoke 40 column display

Note: The Address cursor function is for placing the cursor to a
specific (X, Y) position, where X is the column value and Y
is the row value.

An offset of 32 should be added to X and Y.
An example of Address cursor is:

PRINT CHR$ (27); CHR$(161); CHR$ (32+X);
CHRS$ (32+Y)

X is always followed by Y.

253

APPENDIX E

KEY CODE ASSIGNMENT

254

NORMAL SHIFT

KEY CAP CAP CTRL CAP CAP

LOCK LOCK LOCK LOCK

ON OFF ON OFF
SPACE 20 20 1D 20 20
1 ! 31 31 (No code) 21 21
2 @ 32 32 09 40 40
3 = 33 33 1E 23 23
4 $ 34 34 1C 24 24
5 % 35 35 1F 25 25
6 N 36 36 07 5E 5E
7 & 37 37 78 26 26
8 * 38 38 7D 2A 2A
9 39 39 5B 28 28
0o) 30 30 5D 29 29
= 2D 2D 5C 5F 5F

c 1 3D 3D 7C 2B 2B
N 5C 5C 5C 7C 7C
[« 5B 5B 5B 7B 7B
1} 5D 5D 5D 7D 7D
- 3B 3B 15 3A 3A
. 22 22 7F 2C 2C
~ o 7E 7E FF 60 60
' < 2C 20 08 3C 3C
- > 2E 2E 19 3E 3E
/2 2F 2F 18 3F 3F
u £ DE DE DE DF DF

255

NORMAL SHEET

KEY CAP CAP CTRL CAP CAP
LOCK LOCK LOCK LOCK
ON OFF ON OFF

A 41 61 AB 61 41
B 42 62 9F 62 42
C 43 63 03 63 43
D 44 64 86 64 44
E 45 65 83 65 45
F 46 66 8D 66 46
G 47 67 89 67 47
H 48 68 A0 68 48
| 49 69 85 69 49
J 4A 6A 8F 6A 4A
K 4B 6B 8A 6B 4B
L 4C 6C 93 6C 4C
M 4D 6D AA 6D 4D
N 4E 6E 94 6E 4E
0] 4F 6F 88 6F 4F
P 50 70 91 70 50
Q 51 71 82 71 51
R 52 72 8E 72 92
S 53 73 DD 73 53
T 54 74 DB 74 54
u 55 45 8B 75 55
\ 56 76 9E 76 56
W o 77 DA 77 57
X 58 78 99 78 58
Y b9 79 A2 79 59
Z 5A 7A 97 7A 5A

256

NORMAL SHIFT

KEY CAP CAP CTRL CAP CAP
LOCK LocK LOCK LOCK
ON OFF ON OFF
F1 EO EO Fa EA EA
F2 E1 E1 F5 EB EB
F3 E2 E2 F6 EC EC
Fa E3 E3 D7 ED ED
EE E4 E4 F8 EE EE
F6 E5 E5 F9 EF EF
F7 E6 E6 FA FO FO
F8 E7 E7 FB F1 F1
F9 E8 E8 FC F2 F2
F10 EQ E9 FD F3 F3
GRAPH FF FF " FF FF FF
} 18 18 18 18 18
| 1D 1D 1D 1D 1D
-— 08 08 08 08 08
_— 19 19 19 19 19
DEL 7F 7F 7F 7F 7F
INS 15 15 15 15 15
DEL 1E 1E 1E 1E 1E
LINE
CLS 1C 1C 1C 1F 1F
HOME
BS 08 08 08 08 08
RETURN OD 0D 0D oD oD
ESC 1B 1B 1B 1B 1B
TAB 09 09 09 09 09

CAP
Note: [CTRL] [[1 1], as well as the| LOCK keys generates no

code. They only perform toggling of €CAP LOCK conditions.

257

APPENDIX F

DEFAULT FUNCTION KEY
DEFINATION
(for LASER 500/700 only)

258

Function Key No. Code Generated

F1

F2

F3

Fa

F5

F6

F7

F8

F9

F10

(1FH) LIST (CR)
RUN(1EH) (CR)

TEXT 40 (1EH)
(CR)

TEXT 80 (1EH)
(CR)

COLOR 15,0, 0
(1EH) (CR)

COLOR 1,9, 1,
(1EH) (CR)

PRINT CHR$(27);
“A” (1EH) (CR)
PRINT CHR$(27);
“B” (1EH) (CR)
KEY S(1EH) (CR)

KEY B(1EH) (CR)

Function Description

Clears the text screen, LISTs
the BASIC Program

Clears to end of current line,
RUNs the BASIC program
Clears to end of current line,
FLIPS to 80 column text
screen

Clears to end of current line,
FLIPS to 80 column text
screen

Clears to end of current line,
Sets color to be white Fore-
ground , Black Background
and Black Backdrop

Clears to end of current line,
Sets color to be blue Fore-
ground, light blue Back-
ground and blue Backdrop
Clears to end of line, Sets
NORMAL display mode
Clears to end of line, Sets
INVERSE display mode
Clear to end of line, Sets
keyboard silent

Clears to end of line, Sets
keyboard beep

Note: The characters enclosed on parenthesis on the ““Code Generat-
ed’” column are special control codes embedded in the Function
Key Definition. For example, (1FH) means hexadecimal 1FH is
sent to the screen driver and (CR) means Carriage Return code
(@D) sent to the screen driver. The other code (1EH) is

normally necessary because any garbage text on the right of
the current line might be interpreted as part of the Function
Key Definition. This code (1EH) will clear to the end of the
current line, thus avoiding the “SYNTAX ERROR’’ that would

be produced.

259

APPENDIX G |

GRAPHICS CHARACTER SET

260

DECIMAL HEX GRAPHIC CHARACTER KEY PRESS

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
164
155
156
157
158
159

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
ac
9D
9E
9F

EEEIEEEMNESEEDRINOEECRCREEEEBEDR]

| > =~ NLKXS<KCAHOLWLDPODOPVOZZIrARS~"IOMTMOO®D»H

Note: The Decimal or Hex value shown on the left hand columns of

the above table is the value to be used in a BASIC command
to generate graphic characters on the screen, you should set or
reset the MSB of the byte, depending on INVERSED graphics
characters or NORMAL graphics characters respectively. To
generate the graphics characters directly on the screen, or by
typing from the keyboard, please refer to the "“Key Press’

on the right most column. LASER 350 users may need to use
CONTROL key combinations.

261

T T RN SR

APPENDIX H
BASIC TOKEN TABLE

262

BASIC TOKEN TABLE

BASIC commands and functions are stored as tokens instead of as
individual text. These tokens may consist of one to two bytes.

Tokens for commands and functions are shown separately on the
following tables.

TOKEN TABLE (COMMANDS)

81 END 97 WAIT AD DEFSTR
82 FOR 98 DEF AE DEFINT
83 NEXT 99 POKE AF DEF SNG
84 DATA 9A CONT BO DEF DEL
85 INPUT 9B CSAVE B1 LINE

86 DIM- 9C CLOAD B2 SET

87 READ 9D ouT B3 RES

88 LET 9E LPRINT B4 WHILE
89 GOTO 9F LLIST B5 WEND
8A RUN A0 CLS B6 CALL
8B IF A1 WIDTH B7 WRITE
8C RESTORE A2 ELSE B8
8D GOSUB A3 TRON B9
8E RETURN A4 TROFF BA OPTION
8F REM AS SWAP BB RANDOMIZE
9% STOP A6 ERASE BC TEXT

91 PRINT A7 COLOR BD
92 CLEAR A8 ERROR BE GR

93 LIST A9 RESUME BF
94 NEW AA DELETE

95 ON AB AUTO

96 NULL AC RENUM

263

co
C1
Cc2
C3
c4
Cob
C6
C7
C8
C9

o
>

CB
cC
CD
CE
CF
DO
D1

D2
D3
D4
D5

2| O] [
CH—
m
!I-*II
O

)]
~
O
w
m

1‘35
m
E | |>
0| O] 1O

m

| || A2
n| Q| =] >
ranIl"g
=

| [\
o=
m

m Im

D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1
E2
E3
E4
ES

E7
E8
E9
EA
EB

MON

TO
THEN
TAB
STEP
USR
FN
SPC
NOT
ERL
ERR
STRING
USING
INSTR

VARPTR

INKEY
POINT

264

"EC

ED
EE
EF
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

+ A

XOR

EQV

INP
MOD

TOKEN TABLE (FUNCTIONS)

81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
03
94
95
96

LEFTS
RIGHTS
MID$
SGN
INT
ABS
SQR
RND
SIN
LOG
EXP
CcOoS
TAN
ATN
FRE
INP
POS
LEN
STR$S
VAL
ASC
CHR$

97
98
99
9A
9B
9C
9D
9E
oF
AD
A1l
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC

PEEK
SPACE
OCTS
HEXS
LPOS
CINT
CSNG
CDBL
FIX
JOY

CVI
CVS

265

AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

CvD

EOF
LOC
LOF
MK
MKS
MKD

Cco
C1

C2
C3
Ca
C5
Cé6
Cc7
c8
C9
CA
CB
cC
CD
CE
CF
DO
D1

D2
D3
D4
D5

D6 EC

D7 ED
D8 EE
D9 EF
DA FO
DB F1
DC F2
DD F3
DE F4
DF F5
EO F6
E1 F7
E2 F8
E3 F9
E4 FA
ES FB
E6 FC
E7 FD
E8 FE
ES FF
EA

EB

Note: Tokens for some commands and functions enclosed in the rect-

angular box are disk commands or functions. They can be
executed only after you have booted the Disk Operating

System. (DOS)

The above table also represents a set of reserved words for the
BASIC Interpreter. This implies that you cannot use any of
these words for a variable name. Otherwise, a “SYNTAX

ERROR" will be returned.
Tokens for BASIC commands are one byte in length starting

from 81H onwards. Tokens for BASIC Functions are two bytes
in length, in which the first byte is always FFH.

266

267

APPENDIX I
COLOR CODE

268

Table 1—1 shows the color code for the BASIC command: COLOR |,
J, K where I, J, K are decimal values (0—15) respresenting the Fore-
ground, Background and Backdrop colors respectively.

Code Color Code Color

(] black 8 light grey

1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta

6 vellow 14 light yellow

7 grey 15 white
TABLE -1

Table 1—2 shows the 4 bit color code for bit pattern in the from of

Brf R| G| B

where Br, R, G, B are binary values @ or 1 representing the Brightness,
Red, Green and Blue components respectively.

Br R G B Color Br R G B Color

0 0 0 O black 1 0 0 0 Ilightgrey
.0 0O O 1 blue 1 0 0 1 lightblue

0 O 1 0 green 1 0 1 0 Ilightgreen

0 0O 1 1 cyan 10 1 1 lightcyan

0 1 0 0O red 1 1 0 0 Ilightred

0 1 0 1 magenta 1 1 0 1 light magenta

0 1 1 0 vyellow 1 1 1 0 lightyellow

0 1T 1 1 grey 1 1 1 1 white

TABLE -2

It can be easily seen that the color codes used in BASIC commands
are indeed the decimal equivalent of the 4 bit number formed from Br,

R, G, B.
269

APPENDIX J

SUMMARY OF BASIC COMMANDS
AND FUNCTIONS

270

Commands
ABS
AND
ASC
ATN
AUTO
CALL
CDBL
CHR$
CINT
CLEAR
CLOAD
CLS
COLOR
CONT
COS
CRUN
CSAVE
CSNG
CVD

CVI
DATA
DEF FN
DEFDBL/

INT/SNG/STR

DEF USR

DELETE
DIM
DRAW
END
ERASE
ERL
ERR
ERROR
EXP

FIX

FOR ... NEXT

FRE
GOSuUB
GOTO

Meaning

Absolute magnitude

Relational and logical operation
ASCII value in decimal
Arctangent function

Automatic line number generation
Call machine code subroutine
Convert to double precision

Character represented by ASCII code

Convert to integer

Clear space for variable

Load program from Tape

Clear text screen

Set color

Continue program execution
Cosine function

Load and run program from tape
Save program on tape

Convert to single precision
Convert string to double precision
number

Convert string to integer number
Assign data for READ command
Define function

Define data type

Define address for user’s
Assembly Language Subroutine
Delete program lines

Assign size of array

Draw straight line

Terminate program

Erase arrays

Error line number

Error code

Error condition

Exponential function
Truncated integer part of number
Perform looping

Free up memory

Go to a subroutine

Jump to specified line number

271

Page no.

62
80
71
62
136
158
151
71
151
59
123
41
107
58
62
125
124
151
152

1562
98
65
150

156

55
95
112
58
96
139
139
140
62
62
86
137
90
57

GR
HEX$

IF... THEN ..

GOTO
IF...THEN
... ELSE
INKEY$
INP

INPUT
INPUTS
INSTR

INT
KEY
LEFTS
LEN
LET
LINE INPUT
LIST
LLIST
LOG
LPRINT
LPRINT
USING
MID$
MKD$

MKI$
MKS$
MOD
MON
MOVE
NEW
NULL
OCT$

ON ERROR GOTO
ON...GOSuUB

ON...GOTO

OPTION BASE

OR
ouT
PEEK

Invoke graphic mode
String of hexadecimal value of humber
Conditional branching

Conditional branching

Check keyboard

Return content read from 1/0 Port
Ask for value or string input

Ask for string input

Search for string occurance in another
string

Get integer part

Function key/auto-repeat key setting
Left characters of a string

Length of a string

Assign value

Ask for input a whole line

List program lines on screen

List program lines to printer

Natural Logarithm

Print to Printer

Print to printer with format

Middle characters of a string
Convert double precision number to
string

Convert integer to string

Convert single precision number to string

MODULUS of a number

Enter System Monitor

MOVE without drawing

Clear BASIC program from memory
Set null characters to be printed

String of octal value of number

Error trapping entry point

Conditional branching to subroutine
Conditional branching to specified line
Set minimum value for array subscripts
Relational and logical operation

Sent data to |/Oport

Return decimal value stored at memory
location

272

104
72
78

78

72
141
52
74
73

62
142
70
69
48
74
54
134
62
134
134

70
152

152
152
44
228
113
52
129
71
83
82
82
96
80
141
102

POINT

POKE

POS

PRINT
PRINT #
PRINT USING
RANDOMIZE
READ

REM
RENUM

RES
RESTORE
RESUME

RETURN
RIGHTS$
RND
RUN
SET
SGN
SIN
SPACES$
SPC
SQR
STOP
STR$
STRINGS$
SWAP
TAB

TAN
TROFF
TRON
USR

VAL

VARPTR -

WAIT

WHILE ... WEND

WIDTH
WRITE

Return color code

Load data to memory location
Returns cursor position

Print number or string on screen
Print data to cassette

Print with certain format

Make random number reseed every time
Assign value in DATA statement to variable

Remark

Renumber BASIC program

Clear a point on graphic screen
Recover the same DATA

To continue program after recovery
from error

Terminate subroutine

Right characters of a string
Generate random number

Starts program execution

Plot a dot on the graphic screen
Sign of a number

Sine function

Assign a string of some space
Prints a number of blanks

Square root of a number
Terminate program execution
String representation of a number
String of a series of same characters
Exchange value of variables
Spaces to specified column on the
screen

Tangent Function

Trace mode turn off

Trace mode turn on

Call user’s Assembly Language
Subroutine

Numerical value of string

Address of variable

Wait for pattern set up at 1/0 Port
Execute a loop as long as condition
meet

Set printable width of screen
Print with delimitors

273

112
102
138
35
125
130
64
98
52
136
11
98
83

90
70
62
53
1M1
62
62
129
129
62
58
69
72
138
128

62

139
139
157

69
158
141
88

128
132

APPENDIX K

SUMMARY OF SYSTEM MONITOR
COMMANDS

274

To enter System Monitor:MON
To leave System Monitor:Q

Monitor Command Syntax

ssss : bb bbb bb ...

ssss, eeee : bb

ssss M

ssss, eeee M

ssss, eeee, dddd T

ss |

ss, ee |

ssObb bb bb....

ssss, eeee W ““filename”’

ssss, eeee R ““filename”’

ssss L

ssss, eeee L

Function

Change memory content from ssss
onwards

Fill a range of memory with the same
byte bb, from ssss to eeee

Display memory content of location
SSSS

Display a range of Memory content
from ssss to eeee

Transfer a range of memory data from
ssss, through eeee, to new area starting
dddd

Display the byte value of Input Portss

Display the byte values of Input Port
number ss to ee

Send a series of bytes to Output Ports
number ss, ss+ 1,ss+ 2
Sequentially

Saving a range of memory from
location ssss through eeee, onto
cassette tape using the filename

Load a cassette file with the specified
filename and place it to memory

starting ssss, ending eeee

Disassemble listing from memory
location ssss onwards.

Disassemble listing from memory
ssss through eeee

275

ssss Z ;
Assemble Z-80 instruction mnemonic
and place in memory starting from

location ssss

ssss G Execute machine language program
starting at location ssss

X Display and Edit CPU Registers

P Turn ON/OFF printer output

ssss, eeee + Hexadecimal addition of ssss and eeee

ssss, eeee — Hexadecimal subtration of eeee from
5$SSS

Q Quit system monitor and return to
BASIC

Note: bb, ee, ss are one byte value expressed in two hexadecimal digits
ssss, eeee, dddd are two bytes value expressed in four hex-
adecimal digits

276

277

APPENDIX L

CIRCUIT SCHEMATIC DIAGRAMS

278

on oma | 1301 9000 | 1215

WVHOVIQ LINJHID

(Ivd) 05€ Y35V
un

a1 ADOTONHOAL 03alA (§)

uvo | wauvios

Crm 0 S

4

o [[[eoim [rean]

—{vrounD 03N
glavse i

INASH

P

135301

REETR

L0y -00Y

e _.&

NOISAIY

" |

z

| €

8

279

LIS = - . LS
3 3 | (4 | € } 9 | z] 8
AT Vs NOLLYOdY 1Suid
~ W :
on_oma | 1301300 | azis
R0
o
3 WWIOVIO 1IN0 et
(1vd) 0S€ 43SV =
[T = [35:7)
Q11 ASOTONHOIL 03aIA) | = vu
L
Ay
S
3 SSAley
27
QLS *
s Ass e
4 Lo =)
] aNo o
a5 s ey
a
w 1Yy
rhcx.qcx
i 05-008
H
1 00X 1A D CED YD SO S 0D DI DI eI YD SOX 9O Of 10X I EGX YON SOM 90
.......................... S Y e S N I 1 O
!] ¢ - oS 3 T on &3 w " = a5 T on O ™~ i ™ 7 55 x i Dt]
| | Pl I R 1 . i
I r A B Q v NIY | gwn ¥&T oY I r] v NLY I 9vx o1 9v | 3 Kl R '3 N1b T gun &1 Gv
1 Il il 1 i T I ! Bl
5 | n [o F] | svn B 53 | n d | oot SV | n T o a LR v
+ Bl Bl 4 i
! 7y [6 [d + “ Tvn T ™ " 3 ° (¥ A Ot ™ __ L 8 6 [= TN y w
| Bt ! Bl ! al
| 9 S 7 € 3 T T tvn &7 [33 ! S w) I ow B 33 | 5 8 v B [3 T tun O 7
0 1 i | I o | 1 Bl
| Z n El 3 " o oTvn BT v | A 3 2z EiZE [33 | A 1 b 3 M © I Zvn T v
1 ! D4 l + >t | >l
p— S (G ZE S 2Rl S wn 1
! ! [l I ! Bl ! ! Bl
1 v | x P H | (G2l | T won &1
| Bl 1 & Bl I I} Bl
| H 0 F] 1o AT m Lzl v | H a W1 | wx &7 7 I H [o F] a RIS | Wy ot 17
| i 1 T V—- 1 I bl
X T o &4) X | OV | X o ZR gl
| [B »l
a | A | ovna PF H | 3 [Z e I z T ovn P H
' By 1 I i 1 | Pl
! N 8 A) 14IHS , owx &t ov 1 N Bl 1dI4S CERe ov 1 N El A Bl 131KS I ovn B ov
e Pl 2] = 4 |||||||| =i Lo seprs i = s e acfen i o AR AU MU (U MU S SN S 4
< < 3 S b
3 w < Loy 4 < DAYAT] S M M p: P4 LaLnT
M H H AG. ASe : 3 AS
(Z1¥3MD) (ALa3ZV) rmﬁwnw.
v N3N¥30 HON3Y S
o o =1 o — =I1~=1 ,W@.
e 1

280

o o s ——— —
v =" === M.H
o oma | imaon 2003 | urm P T
' (T [—— i ——
HIOVID LINOUD =) B =il L
(Tvd) 0S€ M35V =) b e Sy - “l“”lll.ll-l
sl] T e | o i
. ——— -
Q171 ADOTONHOAL 03T () || v Ll (ol

I

[=]

{3)

(8]

@

azl

i
!
B

1w | e [wemo |

L aCen

==
1

Zanesie E\Hnn: |
05611700

e

281

: | L | € 8
v L
T 1P o]) — _E: o | |
HBINIS !
__< =) ._
0% 0ma | 1n301 3000 | 3213 v Asgv
o r—— "
WA 134D a| S e g ;
4 (4d) 08¢ uswnn] ¢ e | m—r— |
Tui nﬂo - . ik s .
. o s
QL1 ADOTONHOAL 03 () | 0] o v | e it ”
YO | Benuvios CRRa s mren | w oo souoss B

1
J
1
1
|
1
1
1]
)
1
!
o |0
El A9l i
n
mt | oo "
1
\
1
"
|
'
)
!
!
'
i

oLy

1

, ASe o— as ..ﬁ H 294

AA-
HoL 1N0 sv2

100 311355V
[
NIA
| Q 1
i 1
| 3 =
I
i 787N 1 Al
§ ! n H (W)
' WOl S ou onm o
| b3
1
: H H 90106
! u < gy
L N0
) Ve : NI 311355V)
i ASe NISVD
' Al
i Ase
s o A e e i . o Y e e . Sy e B !." X0
i
= = "
bl |
\
;ww" a0 . THD NI 123135 HD i
..M H RO "
AS —— AN oA ! = =
[T ! g
— _ NIA _, 08 X—M
i
L = |
i v 2+ 05I7MI
H i " 0
£XE ! Y - S
= = H X0t 8
2] '
H —ANN——
i Q200 : Hoi 9
—AM——
i A ; Y -
| BN} L]
1¢ ‘ AN ———
N v]
— TN V3 ' = 9
i
Ar H Hfm Wiz TROBHD
X h i
: B o PARCE
|
\
\
\

282

o ova | cmeorsapa| i

HVYHOVIO NOLODINNOD
(IWd) 0SE YISV
.....

Q11 ADOTONHOIL 03alA ()

g

g

[BiEH
IEII ”
)
i
it

(=]

'

o

ATNO 04/Z14 8 \AAAS AY

AL ER]

.|||:a 77
e T I s i
5iva L3t
O
o3 o
S Bt
P
To AT
oo s
T AA— &
B R
A840L
- — €
]
S — € e
—
e ot aNo o
OND AAAS g W A g
T oy
=0 [o 8z
— e & 2 aand L
L4 B4 ST VOO ey <
[A) av 34
== B B
75v0 2t T 5 [T} N
Ase — % uv L o WA ”
—_— TR O e B
AL £ ano £ Lo :
G — N9 £ S0 U= “
- — TR
vn ASe e 70 i
il o -
K7 o o 0z Y o
T — & T — I o
708 " LN ¢ N M,
37 =1 i) - N
_ e S———
[t} ¥ in " M i
— = M —
o " 3T al oNo
. — Hn _—
o _ RS YA T .
) P === —
% | 0 AT C ™ AN
% 15 a1 8 s VOV s I
1| T " s i
{ o | e TEERC e
1o A B v
_,. t W U1 8 SRS A I
{10 3 A= & FEER S 8
~Ha. — ¢ RS T
4 W AAAS 30 ¢
— 19 —_—u— 9 RS
15 WA s w1
| ==
{0 W MRS b AS+ ’
1 4 o o1 ¢ N o ¢
=k e Ik S——— ¢
{ 3 - TR i 4
L e w L
(i i
-
BEC;
5 |

283

I _ k4 _ € _

4

8
v 9 | L |
{l
0 | gl Vs HOUYOdY 15414 : < _
HEINIS
v on
on owa | inx01 3009 | azis = i =4
s 1m0
A
W00 1IN0 wa| "™ [e e wiem o ﬁ
(1%4) 005 ¥3SV1] ¢ e oo 1w | -stn s e s
un 030 s a R LT cxr, 0¥ - @ﬁ =
o el " | o0 amisrmman o u
011 ASOTONHOIL 03aIA (%) e Il e E 2
1vo [wnivwrs cracin maenic mim |0 em wcrirmsee i ov T ssa
ailov SSALST v T
"V ;j 5 (=
\Ie: 3 v 1 10 SSA T
o
SsA ol 7| 0 t Wrg; (T
i YV
S5 oyt r—q" s e ([T a6
N05YD M fes o A S kam] (R
= v t
15080 00l e g O ? e €
et L w
M O ssumuz O T r@ s
MASA Afe W El o A W W
JHASH &_MH e e " el [T
01V
00— [00
1 13520es m ¢ 0 00 4k
a RETE]
9 GCA
L] acA
AB4OL
19
0093 W
1093 W4
1w e o3
€092 7
000 som0n I
5093 oq|
9092 Q \
%) « 57
w [16] [ﬂ?.
® o 7)
R L
55V s
w0 of
11 e —
Mrvy AVAD i
T w0 B ol I ”
i - 55 71592 sive} i 7 5 st
W e[0 o - _
L b {u32208 5 gt
Vo) s o CEEN e U >
|5v93 9] gl
EEE o o bsionss g
b= o
wo | D :
h————{20 H2STE 5 "y
™o S) i ol
N D S
[(e5] Wi
ovos 6|%° D] ey e
T NEED “
5] 00— o] o
\Ia—é TN
\Igg SN
ASe Ll
3
ﬁ L0) NV —~.

284

e

I - | ° T8 v B .
i g
i e
n |
1 T T T Fleg b
g ESEENDS e g ;g ;
L g=— It 38
1l P @JE g:
i
1] ; i | 1 'L
1 LD |
LG ‘T—lm.ﬁl F f x;g‘, g
!li' !”
I!l l!i
b

RDO-RD?
MA’

} | ‘«

]

4

9 o ¥ osa] o
Iy
O 00 | und0i 3000 | s
YVHOD 1INYD
(1%4) 005 435V =
i
QL7 ADOTONHOAL O3AN () [o S [v .
1o
dL HME €
o A
AN ===t
% ol7 ZHAELBLL 7V OOLAIDRYLL
05617700
o
01
¥3z2n8

[LIP] [N

286

WYHOVIO LN

(14d) 00§ uasn

il

i [

287

un :
a1l ADOIONHOAL O3AN(H) e o ”
1
'
'
D =
'
.
= H ™o |"zo0 | SoLy
' = 3
aant | 00 !
.“w T : X0 1N0 svD
/ 10 31135SYD
ASEE—— LT - ‘
i
. U
| “
k | T z-emm
| | czon
| v —
e A |
!
1 -
vd
i _J
+ . |
o ¢
S
o .
&l = . " = =
. Q:W w
“e { |
- ? =y T+ 0SIN
{ i i [
—AAA—— —P——
AN + 4 0 8 - NASA
Al 0
w3 o INASK
LN
r ./.. . { v 4)
Vo Y AN —— '
s]
SR A
[s 9
Y e = -
¥ ==
A
O™ 8§ oy VO
1
s e
- P -)
{
tem i
y R e
¢ v 9 | L | 9

2 |

| 2 _ _
30 & ums| s P
On_OMa -xx.g—z.u
=
5y WVHON0 1IND¥1 v
(144 004 ¥3sw1 0
nuL n”o
Q171 A9OTONHOAL 03I (§) =
uva TN LYNOIS
v 5°° e v
—i —d 5 o iz G
A
0 £ T
|- 1353y 3 o =
] 7| E&
3 1353y ars
nwj
BEISTIL
7S
a 00¥ 1I0¥ WOx €O Y0M
‘ SI4 9O WA €04 70X SOA 9O ODF 10X IO € M SO 90N
) O N I | L -:; ;I,L:-J _ ;l%-*%-f#‘l
| 1 Bl 1 Bl
Bl
i | SN 30 |, n > < | ” > 0] # 1 a ”__ [SNIT 30 _: _u _n \ _ a g
- _ T “T =27 [l 3nOH [N [11aVD d_ ” - 3WOH |3NNA [A14vD “ ElLal) ”4 — ~|v T‘ —u:ox mz_dﬂx.ﬁ«u D ﬂ 2
Bl 2 l
| sS4 (95 Jud [e3 [63 [oid | L4l L4 64 [oid] R] s34 193 (L4 [ed [63 (o3 a vl ()
- ! T : > i Bt "l
| [_ [¥] _C 7] | 74 [Z] (F] | v v _ T €4 _E _: _ KAl v
| 4 § NI bl al
i i JA ﬁ = ,_& % HgvHo | Ll FEERE] HdvEO | (wn PV w _z v # 7 _am _, #x%ma A PN X
T Jil* S U — | N ! N i
[ir Ty N1y [Rl 1 i NLY (ELR v —a) _4 T NLY v P v
| i L N S | e ! Bl Bl
5 | J‘, w.i Hw s -+ ﬁ Amm ; 0 S8 | oo o B n T 0 |d 53 S 1 3
4 = Lw & === s | N | |
! [(R G [CA = D N BT SR T R = [
I _ ;lb.,)\;%l N | Bt Bl
| To 13 | 53 T : IE) v 253 |t P [33 £ 5 v 3 1 053 G2l 37
|) | It B Bl
IE] z v BvL R 32 A 1 E] 3 o 8vl vy P v
bl bl
— S T wn o W Pr
| I D
0 [IGZRe H v EZhl
| i Bl Bl
13 W1 Nz 7 W9] G 1810 Wy 2T v
| [N i
T X T owx P 2Rl
| = Bl
8 M | o o1 _ z o P
i w _ 1 Bl
A s | o P ov N8 AP 14IHS o P ov
e e e i SO e s s e st I SN —_ e ———
2 3 B
Letxr W LoLny M < Loy
5 ASe 5
\
(2183M0) (AL¥3ZV) MATUINDY
¢ o HoN3Nd HSMON3

288

R == !
o ...L|...1|F 2000 | ser L] 1Z=]
Jo—— a] "I [mommme
(1¥d) oog uasv1 Tl e e e
A sue 2 2 | TE T
o = ? s
Q11 ADOTONHOAL 030N () [[s et s ot e 4

[=]
o -

4

o

AWO 204/Z14 804 T\AAATT NHVAIY

e o ==]

—_—
[
e E— «
T —~ %
Tuw - ~1 ¥
< "
. o
SV
sov i
g g
o
- {w
15
|
1w
{ ¢
{
£ i
{ o
{ ¢
w |
S Y
ov 1 ®
ov 1°
353y i
— p
g
PSR 14
O > h
an J

—
va i
e ————————
76r
sva 2
Y “
Q3un
I
™=
S e R
0 AT %
AT S
¥ea0r | MM
90 MM
T B S0 ks
ST — € .
R — ot T 3
T & e
ve 1% AR
— Ve —j e R
- @ % v WA | %
SN § - — el S G
) 2 z : @ ¢
N w1 IR o
KT L AT -« T Skl &2
T — 4 o E— 13 R VS s K44
] ¥ - 11 ST ®
T e T Tm— L o ——
] —— 6 @ —— 6t e —{ &
20t —1® N - e R
5V ¢ | = - — U
2 N i S o — dal
[{d I 9 N 9 _
s = H | v o & B — %
90y V T A {n y T
e 1¢ 0 a8 AR Y Aﬂ
o
w * u TRV, u g
\ = * W A " v AT
svn - (v AL o T O O O U |
oo 1% T S 6 RS Y am I
vn L RSNV e T k] @
Ve 1 7 RS Sanm N s
vy 1 , s —— 9 = - .
| UAs
= 5 . 5 G oweeca oo
138 * | W A Fol
X o TSV 1 T == ¥
5T L ﬁ Sov AT M ¢ = — ¢
| . ¥
i | JES ™ — &
M |
N] NG # : EN =]
(T s
Do
9 8

289

40 | LIS NS ROLVI Y L5414
~‘ MM h—
ON OMa | 1n301 3000 | 3218 TYnayw ﬁ
i
W7HOVIQ 1INDYID e umaum une -
4 | v P 54 0 DeCO L 10 j “ 4
) 00L HISV | ¢ e cmeom | -t o 1 v v
pozo) . . P PR T T —,
LT] T | 0 i on @ = -
QL7 ADOTONHOAL 03aIA () M0 s e s | e 24 it @ u
avo [wasvions Cace o s | o e wces Bu 2 0
—ov ssA| R—— S5A
o 0 o
= = S e i
.a 4 \llw: |
7 W [e m
I 351"v sl —s]7v - W
TTREES. v
a 3 1nosvo S - 5a m T 12 % ,
T]4sned olke v g; b—1%v o~
77| VHOuHD OB G o |« el
- L Aevommuz | 2w
| LUSA U T E3 e =% 2
M ONASH ol & ML v £ v 10} i
.
1 oIV
— i P o T Wl
9 3544 i
8L w Al <
a =10 Y L S (2
ik cn;1|unﬂ 5|tV Al
00— 1o D7 xmaor.\.o'é o D :q\uﬂw MAIg7
] M N Em %] U pse o
) o Z]evor 00 710000 vl —o &
702 o5 211000 Wy
1] £5v99 whs 1000wl ~
. ~9v92 o €000
] WD gy 105 217090 Eﬁ:
p—gfvod SOty 55099 8|L8
b—s]6v92
{owan
)]nod
1 ddA
e
= oo ﬁ
™oy 9|
Mee—550
woy 9 s <
8 oo 5|0 _j
woo "
~—
wo ¢ ’ T
oD 6
——-110 Sv L
= o0 U T
ooy s e
g oLl
7 e
v f ASe ﬁ
T ——ry O

290

m— | —_—) z | © I'.—l 4 o | ° | z |]
ok AL | 1 Fivos OA LW e LS
_u< — =
on_oma | 1n301 300 | s2rs T 4
ke s e bom O3 st A——)
WHOVIQ LINDHID o] e e [s i e
4 (44 coc wasn =] TR e nes
5 run e T e =
Q11 ADOTONHO3L O3 (&) [T | o mmmms [z
== 4 5%
’ A ” b | | =
| M M
3 A] il ! SSA
| | | | | 0
T e e | =
{ I 1 L I L L L L I ——_ e
= | f A= | Wx = m = ,_ T [~) =) %. — N % BNELCERE] T
! L. 7 1L IR 1 TJL L - 5 [ovne @ 0 q..iz.
Q | : _ ! _) | 1] A 5 5 [Zvne 7 3 oW
| i M | N H _ [ﬁl R ”'4 ﬁl._ Sl Yevee € TG
) } . N — a5 | i a8 Y & T‘IJ G - N s INGEEE RGO
1 It [1 T L‘ N T il ﬁ‘ Y] 1],Sn B Tt o o |
H " + ot _ — ¢ d — — 1 —y t3"° T Tovne @ T |
- S— |] | — |
| ~ ~ | 3 N | 5 [N8 6 [T |
: B R S S e R | i | =t ,
? | ~ | { | =
| [|
—o ,ﬁ - ﬁ | L AGe nEsw I
- -8 e . S I
| | ﬁ A |
\
B 7] ,..ﬁ.,.. [- x _ |
| |
. v v - + S S — — ¢|_|Tn21)
: | 4 5 . _ ~ o o i i B
v v - 0 —— S * J ||ﬂ 4 , ‘ yre
. by & % ce o g R e A N S N G -
] | | i o | |
- ﬁ L J=8 | H ol B e A
b 1 b , i F g ey rlmlmh swip—— |
I = t - = ‘, % = I = == = Ll e
+ - } T \ 2 T o = o W |
| | N I — | Y |
I~ 1 ! ~ I] -—~ ﬁl ~ L —— Jﬂmm, udr o | |
- i .l] | o - 9 ,.....i, \
[) s ~ 7 —~ — [P o , A
' 0 + ' ' | [. |
% & S| R N & % & — & b ,
: |] ' o el — — ﬁ al el ﬁJ oo sl ﬂ A
| S e ==
f S - = i | B el |
B L | ﬁ'lp e | , | f & oW i |
! \l \ 4 b f. 5 B l\‘ﬁ , F
_ | 1 VNOVN
{ L N 9 N \ S . N N
2’ o o Oy oy Os o BT
v
[TS TR
o [or [==] —— [. 3
WS - w
| I r [© _ 3 [+} 1 Nl | o

291

13 _ (1

13 | v sy o | L | 8

0 una 3— NOLLYONSY (Sd1d
MM)

W o

on oma | o 3003 | 3uis - Tndivn =4

nw ————

G0 s um: 00 i e

WO INY1D wa| T ™™ | o wamos s o

(vd) 00, 435V | ¢ e o [n som i vva ron

nu foso) ' S ekt atmou

a1 AS0TONHOZL 03AIA i e e
Fre] ey—— peabootopeclll MpSe————

A

4

mx::
HJ—————on4
ZHAELBLL 71 OOUA0RYZL
05Em700
A T X T
(0 O o
R 7713 7
o
¥3zzne
205 214
@ QSH
AOLT
f2e]
05T H Wiid
waznzsty ——go ol —z=m(3)
= xou Aw 8717NL r
ool
AS 1

W | oo e |) _!._...__) i @

292

Bt t L = A Y h_I 3 T b
O 2 — = Ty e
W o £ 1
on_oma | 101003 | e Tvnetivm F-4 !
WVHOVID 1NDYID = .II.H.HWI_-U 0 s 08 __
4 (144) 0oL wxva T ¢ e e v | s v o
s Lomo) [K [- — '
ruu |] T e | o e
QL7 ADOTIONHOAL 03AN &} [T mves e e e 2 i
'
. 1
1
i
' =
[=
5 .
i :.o:ﬁ:«oc oLy
a nog1 | 100 1 T
v T m A_‘
Age 23 ! 1N0 311355V ¥ 1hosva
TTTuaw i
el NiA ‘
—_ 1
a i
i
I
|
4
— vd
2 agi [o.‘:om "o 123135 WO
o0 |, & e .
T ASe o
H L ()
fVIIC(((\IFl - — = A
Yo [
— | — NIA
W [
L : .
| | H. . 2+ 0SI7NI
X
| = M ————
9 W | = = w [INASA
| P
| .M aon | awon | INASK
| < ' A !
| | 0
,rwwlfllt? A+ W W
= g N *
A Vg V,'.IL
o w
ASe
v
o0 | o []] [=[=] A
oy 1 w@

~

293

4

b | [4 € 14
— | 9 _ L _ 8

B © 5 uws] nvs WOy 15911
—< HSINI ﬂ“,_
OM OMO | 1301 300 | 1218 ViV N-h‘".(
A0 o im0 L e
WYEOYIO LINDHID | T e ™™ | b0 vesan e i
() oocuasy | 1 e o | it 1 30 e
boso) ' ' [DR =
i) v - . 10 il
[eop—— i
ALl ADO0TONHOIL ONQS@ L] Eayaaiiu M P =
uvo NLYNDS CRACME EmauD ST OB MOUTRROSY B (N =
) . (EESTLEOY) | (E2STLYOS)
8 |.Cl)t|”—v dootL qsiu dootl dooisl 80;. d00I~L dooiL dooiL QRL-
5] T T T T T T T T .ﬁ
VAN
(FNOZ04/214 824) Lud o
RUSUURES T} g T aand
Sud AAAS
s
THd \AAAS
[0]
me 0X1) t9d AN
= 154 LTgg WA
T g A
ﬁ Cvix , T84
[oag AT
B o g) 08d
for——
¢ 21X e %a i
5 M3 30015
i O o\ —
¢ [0 on
i iLX W= 70 bi— 9N
0z 108dM P — — an
il VoM O @ “,_ 2 (E4£57% ¥03)
[ON & M
o uva oy e @ Up— (25Tt 804) =
5 BSIS g A
o 03 z a I— 5y GO0
8 mkd B od H
b g e AT
«© s B F— Asng
3
4 ¢ R AN s
6 orh— :m
L A O o Ao
PIE. W) L =1
o Azie s
v
3]
Y — =
{1 ™ HOL
] s | n o dauy
p———b——ns w 8106
) v %o
)
ar3sr ov
a o]
T 183
D‘ L L Iy o
ar
o]
0]

AS
gasm
25 ﬁ

294

(o —) £ Ea

— A — —_— = =
)) LIz e T . : - -
v L] B 1
o _oma | aws0i 2003 | 1an Twaivm =4 ;
arw |
s = Rt el sy |
4 ﬁJ(LV OOF ¥V = ’ llllv' ™ - ——- Tre— PO ! N
il . l. PN (o) e e—— '
5 BRIl Mefepisieson]
ADOTIONH! -
an AL 03N () [T e] o emTmm [TIESD |
'
I
| 1
; L
! =
' T
— "
i 200 oLy
. a3 [| mﬁ 1] w
T T 4
' {100 SV
- 55 ! 1N0 3113SSVD o 1o s
WL :
NIA y
—_— 1 B
\ L !
I T8N | .._. a
. _, - ,h H.a_:.:
' 200 o on 871mi no
” I]
J i
,, C, s i
= - N 3113s5v0 MY x_
ASe ‘l
X
. =
A, xH
w1 ngo) 193135 W)
; A§e @
H M T
S T
Wy T T
— - 08
Ni
Z + 0SIINI
; v - INASA
y.»,H Q
owon
—
A ivd AS- =
H.fm JRRL]
P o5 Yoo 1583 Ase
v
e | on [ema | s o]
NS 1 ‘
T
1), 1

293

! | ¢ | € |
14
9
B 05] iz ROUY(Iddv L5415 _ L _ 8
vsis
_ v o%n
ON OMO
AN3C1 300D | 215 - T uﬁ
s 1 1om 09
4 AVEO7I0 1INDHID voa e, ™ | 540 e i v
(g) oocuzsva | ¢ e cmeom | e o e e
n O30 ' . 1 " O e w1 N GEIOMI
T T i o [-
QL1 ADOTONHOL 03aIA () o e, | s st -
uvo OLYNDS OO Mo s | me mouTIeOse B \/4 T
_ .)) (EL£STL 0] (EL2STLHO0S)
s L 4,.& L doni L % E. ‘é %
bmq H nﬂL oo dooiL doorL doot.L. doot .QSLH QSJ. do01.L dooy
a (A0 4213) cud :
s Elle) Age m g AT
e [Gug A
T8d MAAAST
om0 T AT
— _ s 1stfgz g MAAT
T 3
T Mg s
- i [EE]
e = BT AL
a ™ Ofg) "I5ua
o A A
O\
i 2wix [w i
G MU € <l 300015
“ . AT = S @ 7o) 02— 4y
' 7 IVIX .amN) B— 5y
! oz 104aM [w am
3
o oo un % w i (eUsTLH03)
—e b —_
[vivo QY Dz) P _
9 4 [} =
8 1353015 a [on (2T ¥04)
3
a ﬂ z) — g 0
s 5| ¢ i (9 A—. siol P
) 9 ks w RIS 20106
' e ™
« v
¢] o 9 B E
61 7
) T m
L = o 1] AGe
8 N —= LJ =
1) AZis Lr
. - g 3]
' e %01
fat g
SJ n o duy
a [— wh —
h 1 or
or 3% ov
a o7
N
ﬁ 7|3 use o Ly
— sr -
n 118N3 H & easm
7€ 01 Ase
sf 6 M0l
v 10-00
A\ w0V
FTy
oL

294

— 1 Mo G 8 s e 0. B ————, . - = 1 o= "
F o g ows] or - Voo Ivoriaey 15ert

o

W N“_

ow w0 | sweon 2003 | 22 s =4

o Cmmsed PN o O i sn—

AddnS ¥3M0g] T e o i deacays orabusd

4 (144 ooeaswn =] “ T e me——

z T o == - < w0 mcni e O

| e [T

Q17 ADOTONHOAL 03N (8 [T s ool pe il (gt
3
a

|
|

¥ ADS |
nl
T —0
i |
IRITIE
—]
NI
¥3IMOd
° T
AOS ,ﬁ |OIO|I0\014||||||0
md
= ,.4 HLIMS 330/NO
a9
v
o | e v | o [=]=]
WO W 1 I
] L

295

TR ETTER I

=TT

Tosw] ase 1

R olo : _ i | - _ 9 | 4 |
ara] v WOUYINSY 1531
MEINIY
v oxn
ON_OMma | 1n301 3000 | 3218 i 5
o
il ogion) AT e
¥ WO LINGi1D ™ B Ra i [P
(4d) 0oL w350 | ¢ e oo |t s T et =
e (O30 ' 1] - Lwe w M CEPNORI
all A901 | T i ™| e L
o ey | e 54 0 200 3 A ASe
ONHO3L O30 () [| Smrimmms [noas ey
4
—)ﬂoza =
B GER
|- 1352y
—||ﬁm|3| 1353y IH
3 i A——e AG*
P o
? e
L LE Jrawiava
o
4 00 1O¥ 24 W 0¥ STA 904 00X T 0% €A YA SOA 9O 00X WX ZOX M YO SOX 9T
. cE=sspEeE T T T T T T 1T--- Tl) | i i | # IIIIIIIIIII il
i | 1 Bl | 1 (] | | Bl
§) SN |30 n b« , aw a | DI S T o a | SN 30 W |3 |[C_ |V . a”r q
] B S S E—
_ T « 5 [0 3WOH |3NINO [A1dVD " o 3 “ 1T — |o L 3NOH [3NNA [HdvD “ IR il) “ T « = [l 3WOH [3NINA [A1dVD \ W 2
| B B bl
f | EEINN CEI CE I ER CER (¥ [Rl [! S3 [94 [Ld [ed 64 |oid [gl 8 | 53 [93 [t3 |83 (64 |03 T) 8
1 L § N1 | ! Bl I | Bl
- | 4 |4 4[4 | gl v | LEI R EZ I P | v ol v | LZI CER Z T [F] | v T v
Bt [N 4 Bl
" " ¢ = 45 3 HdvH0 H 2R w _ ‘ [= RG] HdVH9 “ A o w “ n 4 [ds |\ HdV¥9 H on PV w
B — bt
| I | r A 3 n [NLY [EZR v | r 0 Rl ! i N1y T o v
| 4 | - ! Bl | l|'—.||
5 | i | n 1 0 |4 S8 | s ot v | n T 6 |d S8 S v
Bt ' Bl
{ : I R PO O G e Py | P I R (R EE e DT
| I bl
| ! s P DR N £ | e Pt v | C R C G N O B Tt P v
I ! L Bl | 1 ol
[| A 1 ¥ 3 |2 v |evi | o ot v I x 1 ¥ |3 |m o [avI | A oY w
! Bl + Bl
— ! ! | [S Gz ! S WA Y
I I | | i | ! B
| | | 0 [(GZR | v T PT
| l | Il I I | B
| | H o9 4 [J W | ot v | W9 4 Q W | WP v
Bl I NI
i ! % g P ! X e
! ! i ¢ ! N
| | | W v Pt | z | o L
! il Bl | Bl
| N [Z] A E] 14IHS | ovn o1 ov 1 N 8 A D 13IHS I ovx P ov
Limdins = sl b & SRR | RSP (SN (R AA |||||||||||||| -
— W W M Loy M M p: Loty
ASe 5.
(2143m0) (ALY3ZV) (AL¥IMD)
v RECVED] HON3Y4 HSTON3

296

1 1 -
T o WOV LY ety 15w
-
_2
on owa | 1001300 | a2 v
I P R
WYHOVIQ HOLIINNDD a l.u.un....-...“... e b
(19d) 00L w3sva e B hermadir (S 2 —]
T v - - — O AL
=] e | o
a17 ADOTONHO3L 03aIA {3 ey et el -

{

AWO 204/Z14 804 TUANS™ NBVA3Y

o
v
0%
37
= ¢
50
B o
an o
=)
S
"
“
v 28
W o |
W &
ovx e
o 19
[ES d N
¢
‘
03

R

8]
07
6€
8¢
Le
9t
SE
7t
14
f44
e
0e
6
114
24

£t
k24
134
144
14
0
6l
8l
L
9l
St
"
1)
u
"
ot

[I R BT)

297

APPENDIX M

VARIATION BETWEEN DIFFERENT
MODELS

298

1.

2.

PERITEL MODEL WITH AZERTY KEYBOARD

11

1.2

1.3

1.4

1.5

The Cap-lock key is effective for the keys ‘A'—'Z’, ‘0'—'9’
and . When the LED is ON, these keys will generate codes
same as that when the shift key is pressed.

Pressing CTRL together with the following keys with geer-
ate codes as shown belows:

#

CTRL-7
CTRL-8
CTRL-9
CTRL-O
CTRL-)

CTRL-—

/VAN>

Some ASCII characters are substituted by French characters.
The changes are as follows:

Code Original ASCII French character
40H @
5BH [
5CH \
5DH]
7BH {
7CH I
7DH f
7EH &

PO co WO o

There is no RF output for TV at the rear side. A 8 PIN DIN
socket is used instead. A PERITEL cable is provided for
connection to the PERITEL input of color TV.

There is no color defeat and channel select switch.

PAL MODEL WITH QWERTZ KEYBOARD (GERMAN)

2.1

Pressing CTRL together will the following keys will generate
codes as follows:

CTRL-7 ’
CTRL-8 <
CTRL-9 >
CTRL-0 [
CTRL-B u
CTRL-+ N

299

2.2 Some ASCII character are substituted by GERMAN
characters. The changes are as follows:

Code Original ASCII German character
40H

5BH
5CH
5DH
7BH
7CH
7DH
7EH

=== "0
COoO® COY>w

3. PAL MODEL WITH AZERTY KEYBOARD

1.1, 1.2 and 1.3 apply to this model also.

300

301

APPENDIX N

BASIC APPLICATION
PROGRAMMS

302

SUM & AVERAGE

This program computes the total sum and average of a group of
numbers. Can you tell the logic behind the computer?

10 REM SUM & AVERAGE

20 CLS

30 PRINT "SUM AND AVERAGE"
40 INFPUT "ENTER HOW MANY NOS5."3A
50 FOR I=1 TO A

&40 PRINT "NOS." ;Ij"="3;

70 INPUT B

80 C=C+B:NEXT

20 PRINT "SUM =";C

100 PRINT "AVERAGE =";C/A
110 END

RUN

SUM AND AVERAGE.
ENTER HOW MANY NOS.? 5

NOS. 1=7 10
NOS. 2=? 20
NOS. 3=7 30
NDOS. 4=7 40
NOS. 5=7 50
SUM = 150
AVERAGE = 30
Ready

PERMUTATION & COMBINATION

Permutation and combination are 2 popular subjects in modern
mathematics. By using this program, you can get the answers
quickly. Can you beat the computer in speed and accuracy?

303

10 REM FERMUTATION 8 COMBINATION
20 CLsS

30 PRINT "PERMUTATICN 8 COMBINATON™
40 INFUT "ENTER TOTAL NOS.";A
S50 INPUT "ENTER SUEBSET NOS.";B
60 C=1:D=1

70 IF B>»A THEN 30

80 FOR I=A-B+1 TO A

0 IF C¥I>1E+3&6 THEN 200

100 C=C¥I:NEXT

110 FOR I=2 TO E

120 D=D¥I:NEXT

130 PRINT "PERMUTATION =";C
140 PRINT "COMBINATION =";C/D
150 END

200 PRINT "OVERFLOW":GOTO &0

RUN

PERMUTATION & COMBINATION
ENTER TOTAL NOS.? 5
SUBSET NOS.7 4
PERMUTATION = 120
CcOMBINATION = S

rReady

3. HIGHEST COMMON FACTOR (H.C.F.)
. Just input 2 numbers and this program will tell you the Highest
Common Factor.

10 REM FIND HCF
20 CLS

=0 PRINT "FIND H.C.F."

40 INPUT "ENTER 2 NUMBERS";A,B
so IF A=0 OR B=0 THEN 100

&0 IF A>B THEN A=A-B

-0 IF A<E THEN E=B-A

50 IF A<>B THEN &0

90 PRINT "H.C.F. =";A

100 END

304

RUN

FIND H.C.F.

ENTER 2 NUMBERS? 20,10
HeC:Fe = 10
Ready

4. LOWEST COMMON MULTIPLE (L.C.M.)

Similar to (H.C.F.) but will give you the Lowest Common Multiple
instead of the Highest Common Factor.

10 REM FIND LCHM

20 CLS

320 PRINT "FIND L.C.M."

40 INPUT "ENTER 2 NUMBERS";A,B
50 IF A=0 OR E=0 THEN 110

60 IF A>B THENM C=A-1 ELSE C=B-1
70 C=C+1

280 IF INT(C/A)<X>C/A THEN 70

?0 IF INT(C/B)<>C/B THEN 70
100 PRINT "L.C.M. =";3C
110 END

RUN

FIND L.C.M.

ENTER 2 NUMBER? 11,13
L.C.M. = 143
Ready

5. PRIME FACTOR
This program identifies all the prime factors hidden in any number.

305

10 REM PRIME FACTORS

CLS

30 PRINT "PRIME FACTORS"

40 INFUT "ENTER A NUMBER";A
50 IF A=0 THEN 130

60 FPRINT SGN(A);:A=ABS(A)
70 FOR I= 2 TO A:B=0

3 IF A/I<>INTC(A/I) THEN 100
?0 A=A/I:B=B+1:G0TO 80

100 IF B=0O THEN 120

110 PRINT I:;"~":B;

120 NEXT

130 END

N
e}

RUN

FRIME FACTORS

ENTER A NUMBER? 240

1 2 ~ 49 3 N~ 1 5 ~ 1
Read:y

6. ROOTS OF QUADRATIC EQUATION
Generally speaking, Quadratic Equations are in the form of ax2
+bx+c=0, where a, b and c are the constant coefficients and x is
the unknown variable. This program can find out the roots (values
of x) for you easily.

10 REM ROOTS OF QUADRATIC EQUATION
20 CLsS

30 PRINT "QUADRATIC ERQUATION"
40 PRINT "A%X~2+B¥X+C=0"

S0 PRINT "ENTER COEFFICIENTS ";
&0 PRINT “A,B,C"

70 INPUT A,B,C

80 D=B~2-4%A#C

90 IF D<O THEN 160

100 D=S@R (D)

110 PRINT "THE ROOTS ARE :™
120 PRINT (-B-D)/ (2%A)}

130 PRINT (-B+D) 7/ (2%A)

140 GOTO 170

160 PRINT “NO REAL ROOTS"®

170 END
306

RUN

BUADRATIC EQUATION
A¥X~2+BRX+C=0

ENTER COEFFICIENTS A,B,C
? 1,1,-12

THE ROOTS ARE :

-4

i0
20
30
40
S0
60
70
80
20

3

AREA OF TRIANGLE

. The area of a triangle can be deterrnined once the three sides are

fixed. Can you write a program to find out the area of a circle if
| can give you the radius.

REM AREA OF TRIANGLE
cLS

PRINT "AREA OF TRIANGLE"
PRINT "ENTER 3 SIDES"
INPUT A,B,C

D=.5#(A+B+C)
E=D¥*(D-A)¥(D-B)%(D-C)
PRINT "AREA IS";SQR(E)
END

RUN

AREA OF TRIANGLE
ENTER 3 SIDES

? 6,8,10

AREA IS 24

Ready

AREA OF POLYGON

In this program, the area of a regular polygon can be computed. All

you have to do is to input the number of sides and its correspon-
ding length.

307

10 REM AREA OR POLYGON
20 CLS:PI=3.1416

30 PRINT "AREA OF REGULAR ";

40 PRINT "POLYGON"

S0 INPUT "ENTER NOS. OF SIDES";A
60 INPUT "ENTER LENGTH";B

70 C=PI¥(.5%A-1)/A

80 D=AXB¥B¥*TANI(C)/4

?0 PRINT "AREA IS";D

100 END

RUN

AREA OF REGULAR POLYGON
ENTER NOS. OF SIDES? 5
ENTER LENGTH? 4

AREA 1S 27.5278

Ready

9. RADIAN & DEGREE

This program converts any value in radians to degrees, and vice
versa.

10 REM READIAN & DEGREE

20 CL5

20 INPUT "FIND RADIAN(1) OR DEGREE(Z2)";5
40 IF S5=1 THEN 140

50 INPUT "RADIAN";EB

40 C=B¥180/3.1491¢6

70 IF C>3&60 THEN C=C-360:G0T0O 70
80 PRINT INT(C); "DEGREES"

20 D=(C-INT(C))¥&0

100 FRIMT INT(D);"MINUTES"

110 E=(D-INT(D))¥60

120 PRIMT INT(E);"SECONDS"

130 END

140 INPUT "DEGREES";A

150 INPUT "MINUTES";B

160 INPUT "SECONDS";C

308

170 PRINT

180 D=A+B/60+C/3600

190 IF D>3&0 THEN D=D-3&60:G0OTO 190
200 D=D¥3.141&/180

210 PRINT D; "RADIANS™

220 END

RUN

FIND RADIAN(1) OR DEGREE(2)7? 1
DEGREES? 1
MINUTES? 1
SECONDS? 1

.0177491 RADIANS
Ready

RUN

FIND RADIANC(1) OR DEGREE(2)7? 2
RADIAN? 1

57 DEGREES

17 MINUTES

44 SECONDS

Ready

10. FAHRENHEIT & CELSIUS

Similar to Radian & Degree, except to tell you the ¢onversion
in temperature.

10 REM DEGREE FAHRENHEIT & CELSIUS
20 CLS

30 INPUT "FIND DEGREE-F (1) OR DEGREE-C(2)";A
40 IF A=2 THEN 90

50 INPUT "DEGREE-C";B

60 PRINT B; "DEGREE-C =";

20 PRINT B#9/5+32; "DEGREE-F"

80 END

90 INPUT "DEGREE-F";E

100 PRINT Bj; "DEGREE-F =";

110 PRINT (B-32)%5/9; "DEGREE-C"
120 END

309

RUN

FIND DEGREE-F (1) OR DEGREE-C(2)> 1
DEGREE-C? O

O DEGREE-C = 32 DEGREE-F

Ready

RUN

FIND DEGREE-F (1) OR DEGREE-G¥®2)? 2
DEGREE-F? 32

32 DEGREE-F = 0 DEGREE-C

Ready

11. FQOT & METRE
Similar to Radian & Degree, except the subjects are Foot & Metre,

10 REM FOOT & METRE

20 CLS

30 INPUT "FIND FOOT(1) gr METRE(2) "; A
40 IF A=1 THEN o0

50 INPUT "FEET";g
60 PRINT B;"FEET =v;
70 PRINT .3048%B; "METRES"
80 END

90 INPUT "METRES";p

100 PRINT B; "METRES =v;
110 PRINT B/.3048; "FEgT~
120 END

RUN

FIND FOOT(1) QR METRE(2)7? 1
METRES? 1

1 METRES = 3.28084 FEET
Ready

310

RUN

FIND FOOT(1) OR METRE(2)? 2
FEET? 1

1 FEET = .3048 METRES
Ready

12. POUND & KILOGRAM
Similar to Radian & Degree, except that Pound & Kilogram are
being converted.

10 REM POUND & KILOGRAM
20 CLS

30 INPUT “FIND POUND(1) OR KILOGRAM(2)";A
40 IF A=1 THEN 90

S0 INPUT "POUNDS =";B

&0 PRINT Bj; "POUND =";

70 PRINT .4536%B; "KILOGRAMS"

80 END

90 INPUT "KILOGRAMS";B

100 PRINT Bj;"KILOGRAMS =";

110 PRINT B/.4536&; "POUNDS"

120 END

RUN

FIND POUND(1) OR KILOGRAM(Z2)? 1
KILOGRAMS? 1

1 KILOGRAMS = 2.20459 PFPOUNDS
Ready ‘

RUM

FIND POUND(1) OR KILOGRAM(2)? 2
FOUNDS =7 1

i1 POUND = .4536 KILOGRAMS
Ready

3N

13. GALLON & LITRE
Similar to Radian & Degree, except that Gallon & Litre are used.

10 REM GALLON 8 LITRE

20 CLS

30 INPUT "FIND GALLON(1) OR LITRE(2)";A
40 IF A=1 THEN 90

50 INPUT"GALLONS";B

40 PRINT Bj; "GALLONS ="j3

70 PRINT 3.785%B; "LITRES"
30 END

20 INPUT "LITRE";B

100 PRINT B;"LITRE =";

110 PRINT B/Z3.785; "GALLONS"
120 END

RUN

FIND GALLON(1) OR LITRE(2)7 1
LITRE? 1
i1 LITRE = .264201 GALLONS

ready

RUN

FIND GALLON(1) OR LITRE(2)7? 2
GALLONS? 1
1 GALLONS = 3.785 LITRES

Ready

312

14. DEPRECIATION
. The value of most commodities will decrease after a certain period
of time. This program calculates the depreciation value (the

difference) once you have input the original price, the depreciation
-are and the timing involved.

10 REM DEPRECIATION

20 CLs

20 INPUT "ORIGIMAL PRICE"j;A

40 INFUT "DEPRECIATION RATE(%) ";B
50 INPUT "NO. OF YEARS";C
&0 FRINT "DEFRECIATION =";
70 B=E/100

20 D=A¥B¥(1-B)"~(C-1)

20 D=INT(D¥10+.5)/10

100 PRINT D:END

RUN -

ORIGINAL PRICE? 1000
DEPRECIATION RATE(%)? 10
DEFRECIATION = &5.6
Ready

15. SORTING NUMBERS

If you input a group of numbers (from 2 to 20), this program will
sort the numbers in an ascending order. Can you modify the pro-
gram in the way that it can sort the numbers in a descending order?

10 REM SORTING NOS. INM ASCENDING ORDER
20 CLS5

30 PRINT "SORTING NOS. (2-10)"

40 INPUT "HOW MAMY NOS.";A

50 DIM A(19)

60 FOR I= 1 TO A

70 PRINT "NO.";I;:INPUT A(I-1)
80 NEXT I

20 FOR J= O TO A-2

100 FOR I= O TO A-2

110 IF A(I)ZA(I+1) THEN 130
120 B=A(I):A(IN=A(I+1):A(I+1)=B

313

130 NEXT:NEXT

140 FOR 1I=0 TO A-1
150 PRINT A(I);
160 NEXT

170 END

RUN

SORTING NOS. (2-10)
HOW MANY NOS.7? &

NO. 1 .7 &
NoO. 2 ? 5
NO. 3 ? 4
NO. 4 ? 3
NO. 5 7 2
NO. 6 ? 1
1 2 3 4 S5 6

Read

V4

‘

16. SORTING WORDS
This program sorts a group of words (from 2 to 10) in an alpha-
betic order.

10 REM SORTING WORDS IN ALFHABETIC ORDER
20 CLS

30 PRINT "SORTING WORDS(2-10Q)"

40 INPUT "HOW MANY WORDS";A

50 DIM A% (2)

&0 FOR I= 1 TO A

70 PRINT "WORD";I;:INPUT As(I-1)

80 NEXT I

20 FOR J= O TO A-2

100 FOR I= O TO A-2

110 IF AS(I)<A$(I+1) THEN 130

120 B$=A$ (1) IAS(I)=AFS(I+1):A%(I1+1)=B%
130 NEXT:INEXT

140 FOR I=0 TO A-1

150 PRINT A®(I);" "3

160 NEXT

170 END
314

RUN

SORTING WORDS(2-10)
HOW MANY WORDS? &

WORD { ? ZOO

WORD 2 ? FAST

WORD 3 ? LAZY

WORD 4 ? EAT

WORD 5 ? EAR

WORD & ? HELLO

EAR EAT FAST HELLO LAZY Z0OO
Ready

17. NUMBER GUESSING

10
20
30
40
50
60
70
80
@0

The computer will generate a number in random (from 1 to 1000)

and you will have to guess what is the pre-selected number. How
many trials you have to attempt?

REM GUESS A NUMBER
CLS:C=1:RANDOMIZE
A=INT(RND¥1000) +1
PRINT"GUESS A NUMBER"

INPUT "(1-1000)"3E

IF B>A THEN PRINT "SMALLER"
IF B<A THEN PRINT "LARGER™
IF B=A THENM 100

C=C+1:G0OTO 40

100 PRINT "YOU ARE RIGHT™"

110 PRINT "YOU HAVE TRIED";C;
120 PRINT "TIMES"

130 END

RUN

GUESS A NUMBER
(1-1000)7? 500
SMALLER

315

GUESS A NUMBER
(1-1000)7 250

LARGER

GUESS A NUMBER
(1-1000)7 300

YOU ARE RIGHT

YOU HAVE TRIED 3 TIMES
Ready

18.

i0
20
30
40
50
60
70
80
0

WORD GUESSING _
This time you have to guess a 4 letter word. The method of playing

is similar to the Number Guessing.

REM GUESS A WORD

CLS:RANDOMIZE
CH="FISHRUSHRESTSIDETALKDIRTWORKGIRLJUMPMOOD"
I=(INT(RND¥10))%¥4+1

AS=MIDH(CH, I,4) :S=1

PRINT "GUESS A WORD"

INPUT " (4 LETTERS)";B%

FOR J=1 TO 4

IF MID®(A%,1,J)=MIDS(B%,1,J) THEN NEXT

100 PRINT "YOU HAVE";J-1;

110 PRINT "LETTERS RIGHT"

120 IF J<>S THEN S=S+1:G0TO &0
130 PRINT "YOU HAVE TRIED";Sj
140 PRINT "TIMES"

150 END

RUN

BUESS A WORD

(4 LETTERS)? R

YOU HAVE O LETTERS RIGHT
GUESS A WORD

(4 LETTERS)? S

YOU HAVE 1 LETTERS RIGHT
BUESS A WORD

(4 LETTERS)? SIDE

YOU HAVE 4 LETTERS RIGHT
YOU HAVE TRIED 3 TIMES
Ready

316

19.

10
20
30
40
50

RANDOM GRAPHICS
Random graphic is generated by making use of the pre-defined
graphic characters.

REM GRAPHIC

CLS:RANDCMIZE

COLOR INT(RND¥13)

N=INT (RND¥95%)
Y=INT(N/40) : X=N-INT (N/40) %40

60 PRINT CHR$(27);CHR$(161);CHRS (X+32);

CHRH(Y+32); "¥" 3

70 GOTO 30O

20. MELODY
You can write and play your own song. All you have to do is to
select the frequency code and the duration code of each note.
However, the maximum number of notes that you can play at one
time will depend on the memory size of your computer.

10 REM S0ONG

20 CLS

30 INPUT "ENTER NO. OF NCOTES"j3HN

40 PRINT "ENTER YOUR NCTES"

50 DIM A% (2%N-1)

60 FOR I=0 TO N-1

70 INPUT "FREGIIENCY CCODE"5A%(IX¥2)

20 INRPLUT "DURATIOM CODE";A%(I¥2+1)

20 MEXT

100 FOR I = O TO N-1

110 SOUND A%(I¥*2) A% (I¥2+1)

120 NEXT

RUN

ENTER NO. OF NDTEZS? 8
ENTER YOUR NOTES
FRERUENCY CODE? 2é
DURATION CODE? 3
FRERUENCY CODE? 30
DURATIOM CODE? 3

317

FREQUENCY CODE? 28
DURATION CoDE? 3
FREQUENCY cope~? 21
DURATION CODE? 5
FRERUENCY coODE? 26
DURATION copeE? 3
FRERUENCY CODE? 28
DURATION CODE? 3
FRERUENCY CODE? 30
DURATION CODE? =
FREQUENCY CODE? 26
DURATION coDpE? 7
Readw

21. MARK SIX
It will generate 6 random numbers with one extra special number.

10 REM MARK SIX

20 CLS:RANDOMIZE

30 FOR I =1 TO 7

40 A(I)=INT (RND¥3&)+1
50 IF I = 1 THEN 90
60 FOR J=1 TO I-1

70 IF A(I) = A(J) THEN 40
80 NEXT

20 NEXT

100 PRINT "THE NOS. ARE :*
110 FOR I =1 TO 5

120 FOR J = 1 TO 5

130 IF A(J)<A(J+1) THEN 150
140 B=A(J):A(J)=A(J+1):A(J+1)=B
150 NEXT:NEXT

160 FOR J = 1 TO 6

170 PRINT A(J);

180 NEXT

190 PRINT

200 PRINT "SPECIAL NO. IS :@*
210 PRINT A(?)

220 END

318

RUN

THE NOS. ARE :

4 17 23 30 33 34
SPECIAL NO. IS :

4

Ready

22. RAM DISK
The following program demonstrates how to use the extra memory
that are not used by the BASIC interpreter as a RAM disk. After
the RAM disk is installed, the user can type ‘SAVE’ to save his pro-
gram in the RAM disk and retrieve it with the ‘LOAD’ command.

The BASIC program is used to poke an machine code program into
the RAM. The assembly language program listing is also included
to demonstrate how to perform bank-switching.

10
20
30
40
50
&0
70
RAM
80
0
100
110
120
130
140
s 8:H
150

REM SET UF LOAD COMMAND VECTOR
FOKE &HS85%E, &HBO

POKE &HB8S59F,HB8&

REM SET UUF SAVE COMMAND VECTOR
POKE #:HB85B3,RHB3

FOKE &H35B4, &H36

RPEM POKE MACHIME CODE PROGRAM INTO

FOR AD=&HB8&E0 TO &HE720

READ OF

POKE AD, 0P

NEXT

PRINT "RAM DISK INSTALLED"

END

DATA &HAF,&H18,&H02, &H3E, &HO1 , &HFS
2, &HES, &HB3

DATA &HED, &HSE, &H41, &.H30, &HE7, &HED

, BH52
160 DATA &H44,8HA4D, &H11, &HFF, &H21, &H7A
, &kH94, &H3S, &H3A :

170

DATA &H20,8HO04,&H7B, kH?5, &H3E, &H34

, LH3E,, &HO6, 8 H32, &H& 6, &:HB S

319

120 DATA @HDT, H41,&HF 1, &HE?, &H28, &H16
.&HED,&qu,&H21,&H87,&H11,&HOO,&HSE
190 DATA eHzA,pH41, 8HE0, &HED, &HEO, &HIE
s @HO L, & H32 2 He4, 2HES, BHDI, &:H 1

200 DATA &HCI, tHS®, &HOO, BHED, &HAE, &HZ 1
\&HEY, LHED, &HSE, &:H4A 1, &HE0

210 DATA gHez, BHGE, &HOP, &H22, BHES , &HE3
VEHZ L BH0O, BHSE , &:H1 3, BHE L, BHF 1

220 DATA pHZ1,8HLZ, EHE?, &H7E, kHB7, &HCA
,#HS9, HOO, &.HCD , AHEE, 3HOO, &HZ3, &:H13, &H
Fs

2720 DATA pHST, aHAD, BHSA, GHIAS, kH20, &HS4
VOHAF, BHAF 2 H20, &H4C, &HA 1, &HS 2, &H4 7, &H
45, B:HDO

i USE EXTRA RAM AS RAM DISK FOR LASER 350/500/700

i ADDRESS 15£00-17FFF ARE NOT USED BY THE BASIC
i INTEPRETER AND CAN BE USE BY USER
7
H

10 VARTAE £aU 83FSH

11 TXTTAB FQU 8oark

12 BANAI £QU B&656H

13 READY £EQU 0059# JENTRY POINT OF BASIC

4 QUTDO £EQU 00ZBH FOUTPUT DRIVER

16 ORG B&BOH JUSE DEFRULT BUFFER TO SAVE P
ROGRAM

17 LORAD:

18 NOR M JLAT=0 FOR LOAD

1% JR SAVE L

0 SAUVE

21 LD A, L

IZ2 SAVE!

23 PUSH AF

249 LD HiL, C(VARTAB) FICALCULATE WHETHER SIZE OF P
ROGRAM IS 700 LRARGE

25 LD DE, (TXTTAB)

25 OR A

27 SBC HL,DE

29 LD B, H

2¢ LD Cyt

Jo LD DE, 2177 H PMAN SIZE FOR RAM DISA

3z LD a, D

3z SuUB #

33 TR C, NORAM

34 JR NZ, RAMOA

5 LD A, £

36 SuUB L

320

37
38
39

420
21

22
23
22

25
26
27

28
49
50

52
53

54
55

56
S7
58
59
60

-2
62
63
64
65
66
-24

223
69
70
71
72
73

74
75
76

RAMOK

SAVES

LOADI

NORAM

NORAML

rMseG

LENGTH

JR

LD

LD
ouUT
POP
QR
JR
LD
LD
LD

Ly

LD
LD
LD
ADD
LD

LD
JR

POP
LD

LD

OR
JP
CALL
INCc
JR
DEFNM

DEFB
DEFS
END

C,NORRM

Ay &

(BANKL) ;A
CHLIA) A
AF

A

Z,L0RDIL

;FUT PHYSICAL BANAK 6 TO LOGIC
AL BANK I

s UPDARTE BANKLI INMARGE

FCHANGE THE BARNK

;SEE IF SAVE OR LOAD
i LORD

CLENGTHI 4 BC

DE,S5E00H

;STARTING NADDRESS OF RAM DISK

HL , CTXTTRAB) FGET PROGRAM STARTING ADDRES

A, L

CEANKL? 4 A
(RIH) 4 A
READY

BC, (LENGTH)

DE, (THTTAB)
H, D

L, E

HL,BC
(VARTAB) ,HL

HL,SEQ0H
SAVES

AF
HL ,MSG

Ay CHL)

A
Z,READY
oUTDO
HL
NORAML

S
i SAVE PROGRACM IN RAMDISK

JRESTORE PHYSICAL BANK L TO (L
OGICAL BANK I

JACTUAL CODE FOR LORD

FGET LENGTH OF FPROGRARM IN RA
MNDISK

JUPDATE END OF PROGRAM RDDRE
SS

iCLERAR STACA

FPRINT "SIZE TOO LARGE™ MESSA
GE

FOUTPUT THE CHAR

"SIZE TOO LARRGE’

OH
2

i STORE SIZE OF PROGRAM

321

322

LASER 350 / 500 / 700 Keyboard—Control Keys

Beep Buzzer
Clear Screen

Home Cursor

LOEE g e EAtar
e S D b
1 U2 @3 #||a 3||5 * e
| [| []| [ferom] [T
Q|| W] E R || T P ||RETURN

[auto] [ster] [om__]| [[cosue GOTO . [inserT]| ([RuBouT]| |[GRAPH |
ctrul| A || S || D || F TN

= e

et)| [[poxe]| [[ereax]| [[cpamT] | =13
?
siFT || Z || X || C ||V - [/ [SHIFT

- vy TS P R e g T E— = === ——t e _ L e

NON.pISCLOSURE AGREEMENT
AND
REGISTRATION FORM

The party below agrees that it is receiving a copy of Microsoft BASIC for use on a single computer
only, as designated on this non-discjosure agreement. The party agrees that all copies will be strictly
safeguarded against disclosure to or use by persons not authorized by Video Technology Computers,
Ltd. to use Microsoft BASIC, and that the location of all copies will be reported to Video Technology
Computers, Ltd at Video Technolggy Computers, Ltd’s request. The party agrees that copying or
unauthorized disclosure will cause great damage to Video Technology Computers, Ltd. and the
damage is far greater than the value of the copies involved. The party agrees that this agreement shall
inure to the benefit of any third party holding any right, title or interest in Microsoft BASIC or any
software from which it was derived,

Purchased From:

Purchased By: (Distributor)

Company

Name
Address

Company

Address
Phone

For Use On:

Model Phone
Serial Date
Software Product
Purchased By: (Dealer) Purchased By: (End-User)
Name Name
Company Company
Address Address
Phone Phone
Date Date

NOTE: The Non-Disclosure Agreement MUST be signed by Party purchasing product directly from
Video Technology Computers Ltd.. No Product will be shipped without signed agreement. It is the
responsibility of Distributor and/or Dealer to transfer ownership to appropriate party.

Completed form should be returned to the following address:

VIDEO TECHNOLOGY COMPUTERS LTD.
23/F., Tai Ping Ind. Centre, Blk. 1,
57 Ting Kok Rd., Nam Hang, Tai Po,

N.T., Hong Kong. 96-2004-00

NON-DISCLOSURE AGREEMENT
AND
REGISTRATION FORM

The party below agrees that it is receiving a copy of Microsoft BASIC for use on a single computer
only, as designated on this non-disclosure agreement. The party agrees that all copies will be strictly
safeguarded against disclosure to or use by persons not authorized by Video Technology Computers,
Ltd. to use Microsoft BASIC, and that the location of all copies will be reported to Video Technology
Computers, Ltd at Video Technology Computers, Ltd’s request. The party agrees that copying or
unauthorized disclosure will cause great damage to Video Technology Computers, Ltd. and the
damage is far greater than the value of the copies involved. The party agrees that this agreement shall
inure to the benefit of any third party holding any right, title or interest in Microsoft BASIC or any
software from which it was derived.

Purchased From:

Purchased By: (Distributor)

Company
Name
Address
Company
Address
Phone
For Use On:
Model Phone
Serial 7 Date

Software Product

Purchased By: (Dealer)

Purchased By: (End-User)

Name Name
Company Company
Address Address
Phone Phone
Date Date

NOTE: The Non-Disclosure Agreement MUST be signed by Party purchasing product directly from
Video Technology Computers Ltd.. No Product will be shipped without signed agreement. It is the
responsibility of Distributor and/or Dealer to transfer ownership to appropriate party.

Completed form should be returned to the following address:

VIDEO TECHNOLOGY COMPUTERS LTD.
23/F,, Tai Ping Ind. Centre, Blk. 1,
57 Ting Kok Rd., Nam Hang, Tai Po,

N.T., Hong Kong. 96-2004-00

LASER

COLOR COVIPUTER

350/500/ 700

©1985 VTCL. MADE IN HONG KONG 91-2048-07

