MG
by Logo Computer Systems In¢.

Guide to
Programming

Microsoft. MacLibrary. Software Series for Apple. Macintosh..

Logo
Guide to Programming

by Logo Computer Systems Inc.

version 1.0
for Apples Macintoshm

Published by the Microsofts MacLibrarym
Software Series

Microsoft Corporation

Logo Computer Systems Inc. and/or Microsoft Corporation reserves the right
to make any improvements and changes in the product described in this
manual at any time and without notice. The software described in this
document is furnished under the Microsoft License Agreement and may be
used or copied only in accordance with the terms of the Microsoft License
Agreement.

o Logo Computer Systems Inc. 1985

All rights reserved. No part of this publication may be reproduced, stored in
retrieval system, or transmitted, in any form or by any means, photocopying,
clectronic, mechanical, recording, or otherwise, without the prior approval in
writing from Logo Computer Systems Inc.

If you have comments about this documentation or the enclosed software,
complete the form at the back of this manual and return it to Microsoft
MacLibrary.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation. MacLibrary is a trademark of Microsoft Corporation.

The Logo logo is a trademark of Logo Computer Systems Inc.
Mac Logo is a trademark of Logo Computer Systems Inc.

Apple is a registered trademark of and Macintosh is a trademark licensed to
Apple Computer, Inc.

Lisa, MacPaint, MacWrite, and MacWorks are trademarks of Apple Computer,
Inc.

Document number: 690080-001-00

Acknowledgements

Authors
Eric Brown
Sharnee Chait

Contributing Editor
Seymour Papert

Graphic Design and Layout
Lorraine Lavigne
Richard Lavigne
Julien Perron

Founded in 1980, Logo Computer Systems Inc. is the world’s leading
developer of Logo, having developed the Logo language for a wide range of
microcomputers. Logo Computer Systems Inc. has made the Logo language
international, with translations into many languages. Noted for superior
documentation and software design, the products of Logo Computer Systems
Inc. have become the world standard.

Contents

Introduction ix
What You Need x

Before You Begin xi

1 Getting Started

Starting Up 1
Typing Instructions 3
Getting Help From Logo 6

Exploring Further: A Demonstration

2 Communicating With Logo

6

Action 7
Controlling the Turtle 7
Fixing Typing Mistakes 10
Printing Text on the Screen 11
Using the Repeat Command 11
Filling Shapes With Patterns 12
Opening Windows 13
Calculating With Logo 16

Reflection 17
Turtle Geometry 17
Inputs 17
Bugs 17

Exploring Further 18

Logo Vocabulary 18

vi

Contents

Defining Procedures and Using Subprocedures

21

Action 21
Defining Procedures 21
Fixing Bugs in a Procedure 25
Using Cut and Paste to Edit 26
Drawing a Starry Sky 20
Writing a Superprocedure 28
Printing Your Pictures 29
Reflection 29
Naming 29
More Turtle Geometry 30

Superprocedures and Subprocedures 30
Commands and Operations 30

Exploring Further 31

Logo Vocabulary 32

Examining Your Workspace and Saving Files

33

Action 33
Examining Your Workspace 33
Erasing From the Workspace 34
Saving Your Workspace 35
Listing Files 35
Clearing Your Workspace 36
Loading Files 37
Erasing Files 37
Saving and Loading Windows 37

Reflection 39
Distinguishing Workspace From File Space 39
Naming Files 39

Logo Vocabulary 39

Using Variables

41

Action 42
Defining Procedures With Inputs 42
Checking for Possible Bugs 43
Defining a Text Procedure With Inputs 44
Creating a Variable Sized Star 44

Reflection 47
Exploring Further 47

Logo Vocabulary 48

6 Drawing Polygons and Spirals

49

Action 49
Drawing Polygons 49
DefiningaSun 51
Drawing Spirals 52

Reflection 54
Experimenting 54
Total Turtle Trip Revised 55
Recursion 55

Exploring Further 56

Logo Vocabulary 56

7 Exploring Recursive Procedures

57

Action 57
Creating Stop Rules 57
Writing a Stop Rule for Spi 58
Writing a Stop Rule for Poly 58
Writing a Stop Rule for Words and Lists 60
Adding Instructions After the Recursive Line 62

Reflection 63
Conditions, Actions, and Predicates 63
Recursion With Words and Graphics 64
Thinking About Recursion 65
Exploring Further 66

Logo Vocabulary 66

8 Creating a Bar Graph Project

67

The Scenario 67
The Plan 70

Action 70
Step 1: Setting Up the Windows 70
Step 2: Drawing the Axes and the Bars 71
Step 3: Determining the Bar Height 74
Step 4: Labelling the Graph and the Bars 77
Step 5: Writing the Superprocedure 80
Step 6: Setting Up the Initial Windows 81
Program Listing 83
Program Structure of BarGraph 85

Contents vii

viii

Contents

Reflection 85
Operations 85
Some Notes on ReadWord 85
Window Coordinates and Screen Coordinates 86

Exploring Further 87

Logo Vocabulary 87

Manipulating Text 89

Action 90
Generating Random Sentences 90
Step 1: Creating Lists and Picking a Random Word 90
Step 2: Writing the Sentence Generator 92
Step 3: Extending the Sentence Generator 93
Generating a “Dialect” 94
Step 1: Examining and Replacing Part of a Word 94
Step 2: Writing a Superprocedure to Replace Words in a List 96

Reflection 97
Global Variables 97
Operations Written in Logo 97
Recursive Operations 98
Exploring Further 99

Logo Vocabulary 99

10 Building a Phone Directory 101

Action 102
Step 1: Entering the Data 102
Step 2: Printing Out the Phone List 103
Step 3: Adding and Changing Listings in the Phone Directory 106
Program Listing 107
Program Structure of PhoneList 108

Reflection 109
The Elements of a List 109
Replacing an Element in a Property List 109

Exploring Further 110

Logo Vocabulary 110

A Concluding Note by Seymour Papert 111

Other Books About Logo 113

Index 115

Introduction

Logo is a language for computers and people. Using Logo, beginners can get
dramatic and interesting results quickly. Experienced programmers will find
rich material in Logo with which to develop their skills.

The Guide to Programming is an introduction to Logo programming, It is Use the guide
intended for both new computer users and people who already know about

computers. This guide shows you how to build and change programs, store

and retrieve your work, and also provides examples of Logo programs that you

can write.

Most chapters in this guide are divided into the following sections: “Action”,
“Reflection”, “Exploring Further”, and “Logo Vocabulary”. “Action” introduces
you to important primitive procedures — the basic words of Logo’s vocabulary
—and provides sample programs to work on at the computer. “Reflection”
gives you additional information on related Logo concepts that you can read
when you want to take a break from programming. “Exploring Further”
suggests activities to try on your own. “Logo Vocabulary” lists the primitive
procedure names, menu items, and special characters and keys introduced in
each chapter.

Don’t worry if some new concepts seem unclear to you when they are first
introduced. As you become familiar with Logo by working through the guide,
these concepts will be clarified.

Note When interaction with Logo is shown in the guide, red text represents
what you type on the computer. Black text represents what the computer

displays.
The Reference Manual works with the guide to expand your understanding of Use the Reference
Logo. It provides a complete description of the Logo language and should be Manual

used for reference purposes, not as a guide for new users.

X Introduction

Examine
demonstration
programs

Optional hardware

The Master Logo disk contains:

® File Edit Uiew Special
E[[==—————-—= Master Logo

9 items 352K in disk 48K available
K
P 4 -
kﬁfa;k 4\55 .
., N L)
System Folder Demo Files Preferences Lago Demo Menu
LN
£
I =)
Ernpty Folder Samples File Primitive Sets Samples Menu
O
[[

l

Trash

In addition to the Logo program, there are three files that will be of interest to
you. Choose the Demo Menu file from the Finder for a demonstration of some
of the powerful effects you can produce with Logo. Choose the Samples Menu
file for ideas of the different kinds of Logo programs that you can write; more
complex programs are included in this file. Choose the Exploring Further file for
suggested program listings of the sample graphics found in each

“Exploring Further” section of the guide.

What You Need

To use Logo, you need an Apples Macintoshm computer with 128K or 512K of
memory and a disk drive, or an Apples Lisam with MacWorksm. Any options
you may have can be useful:

B asecond disk drive
® 3 printer
® a2 modem

B anything that plugs into the serial input-output plugs

Before You Begin xi

Note All the procedures and examples in this book work with the original
Logo product that arrives in the package. But Logo can be easily customized
and certain commands removed. So, if you are not the first person to use the
Logo disk, don’t be upset if the graphics instructions, for example, don’t work.
They are easy to restore in Logo. Refer to Appendix C, “Using the Preferences
Program”, of the Reference Manual.

Before You Begin

Make at least one copy of the master disk by moving the Master Logo disk icon
over the icon for the other disk. See Macintosh, your owner’s guide, for details.

We assume that you have read Macintosh and understand the basic Macintosh
terminology: “clicking”, “dragging”, “selecting” and the use of the Menu bar.
If you are not familiar with these terms, take time to review them now.

1 Getting Started

This chapter tells you how to start up Logo and type in instructions.

Starting Up

Insert the Logo disk into the drive.
[2] Turn on the computer.

[3] Open the Logo file from the Finder.

-

13 LN Edit Uiew Special
rﬂpen“ Masterl.agn

Duplicate™ 8D [~ o 5 ek 47K available

Get Info &1
Put Back A _
G @ [B)

Close Prefer:ences Demo Menu
Close All

Print I,
] =)

Eje':t EE Primitive Sets Samples Menu

Load Logo

2 Getting Started
Logo is loaded when you see this on the screen:

" & File Edit
L Graphics

Teut
1985

(c) Copyright Logo Computer Systems Inc.
Welcome to Logo

Two windows are displayed on the screen: one called Graphics and one called
Text. What you type appears in the text window. What you draw appears in

the graphics window.

The flashing line on the text window is called the /nsertion point. This is
where what you type will appear. You can move the insertion point to the next
line by pressing the Return key, or to any location in the window by moving
the mouse pointer and clicking the button.

Typing Instructions 3

Typing Instructions

Type a line. With the insertion point still on the line, press the Enter key. Logo
will treat the line as an instruction, and try to perform, or “run” it.

For instance, type:
hello Press the Enter key.
Logo responds:

I don’t know how to hello

Logo is correct. Hello isn’t in Logo’s initial vocabulary, but that’s not important.

You can’t hurt Logo by experimenting.

Type:
print [Greetings!] Press Enter.
Logo responds:

Greetings!

If nothing happened, you may have pressed the Return key, not the Enter key.
There is a big difference between these keys.

The Return key signals the end of a line, and moves the insertion point to the
next line.

The Enter key takes the current line, or a selected area of text, and gives the
text to Logo as instructions to run. Do It in the Edit menu has exactly the same
function.

Move the insertion
point

4 Getting Started

Meet the turtle

Now try some graphics commands:

showturtle Press Enter.
forward 70 Press Enter.
Graphics Graphics
o

You can type several instructions at one time using the Return key
to separate them:

cg Press Return.
back 65 Press Return.
left 90 Press Return.
forward 65 Press Return.

Select those four lines with the mouse. (Point to just before CG, click and hold
the button down while you drag. The text will be highlighted as you select it.)

Typing Instructions 5

With the lines selected, press Enter. You should see:

3 _File Edit

Graphics

showturtle

Remember: Remember the Enter
and Return keys

B The Return key moves the insertion point to the next line

B The Enter key tells Logo to run the current line or selection

Now clear the graphics window by typing:

cg Press Enter.

6 Getting Started

Choose Help

Getting Help From Logo

The Help item in the Edit menu provides information about procedure names.

To use Help, simply select the procedure name on the text window, then
choose Help. A box will appear with the Help information. When you've read
the information, click the OK button in the corner.

" & rie [T

€ File AT
| Gt
Help information

Cut ®BHE
Copy ®C |
Pasie wi
Clear #EN
select All %A

Back number

Moves the turtle number
steps back.

Eg: back 50

See a demonstration

forward 70 forward 70
= [

65 65
left 90 left 90
forward 65 forward 65
cg cg

Exploring Further: A Demonstration

You've just taken your first steps into the Logo world. This is a good time to
look at where those steps can lead. To see the demonstration program:

[1] Choose Load from the File menu.

[2] Click Workspace.

[3] Select the file named Demo Menu.

[4] Click Load.

[5] Follow the instructions that appear on the screen.

2 Communicating With Logo

To communicate with Logo, you type instructions. As you saw in Chapter 1,
“Getting Started”, Logo responds to instructions by producing effects on the
screen.

This chapter introduces graphics commands, most of which control a
computer creature called a turtle. Graphics is a good context in which to start
learning Logo since you can see how your instructions work. You will also
learn to open new windows and begin doing arithmetic.

Action

Controlling the Turtle

To see the turtle on the graphics window, use the command ShowTurtle
(or ST for short). The command HideTurtle (or HT) makes the turtle invisible.
Type:

showturtile Press Enter. Show the turtle
hideturtle Press Enter.
51 Press Enter.

Graphics Graphics Graphics

8 Communicating With Logo

Move the turtle

Change the turtle’s
heading

Now, move the turtle with the Forward (Fd) command. Forward needs an
input —a number indicating how many steps the turtle is to move. Try:

forward 50 Press Enter.

Notice that the turtle changed its position, but its heading (the direction it was
facing) remained the same.

To change the turtle’s heading, you can use the command Right (Rt) or Left
(Lt). Like Forward, the Right and Left commands each need an input —a
number indicating how many degrees the turtle is to turn. Type:

right 90 Press Enter.

The turtle turned 90 degrees to the right of its previous heading. Notice that
the turtle changed its heading, but not its position on the screen.

Back (Bk), like Forward, moves the turtle away from its current position
without changing its heading. For example:

back 80

Graphics Graphics Graphics

o T 05‘1

Left turns the turtle left:
left 45

The turtle turned 45 degrees to the left. Its heading changed, but not its
position. Move the turtle forward to see the effect of the turn:

forward 100

If you don’t like the length of that last line, erase it by tracing over the line with
PenErase (PE).

enerase Press Enter.
back 100 Press Enter.
Graphics Graphics Graphics
e?—“ Qq_\
o

Use PenDown (PD) to put the drawing pen down. Otherwise, the turtle will
continue to erase any lines it passes over.

endown Press Enter.
forward 50 Press Enter.

Home sends the turtle back to the center of the window, pointing straight up.

home

At this point, you may want to clear the lines from the graphics window and
experiment with the commands you have learned. CG (which stands for Clear
Graphics) erases all the lines on the graphics window:

.

Graphics Graphics Graphics

G

Controlling the Turtle 9

Erase aline

Clear graphics and
text

10 Communicating With Logo

Correct mistakes with
the Backspace key

To clear the text from the text window, use CT (for Clear Text):
oy o

Choosing Clear from the Edit menu will also clear the text.

Fixing Typing Mistakes

If you make typing mistakes, Logo won’t understand your instructions and will
print a message to tell you so. For instance, if you type:

frward 100
and then press the Enter key, Logo will respond:
I don‘t know how to frward

Spaces between a command and its input are very important. If you forget a
space, Logo won’t understand your instructions. For example, if you type:

right90
Logo will respond:
I don’t know how to right90

Logo interpreted right90 as one word, and printed a message indicating its
incomprehension.

If you've made a typing error, use the Backspace key to erase the error
and retype to correct it.

In general, editing text in a text window is the same as editing text in a
Macintosh word processor or other text program. The mouse is used to move
the insertion point or to select, the Backspace key is used to erase, and Cut,
Copy, and Paste in the Edit menu are used to move blocks of text around.

Printing Text on the Screen

Printing Text on the Screen

Print (or Pr for short) is the command that prints text. Try:

1

print 5 Prints a number. Print text
pr‘int "Hello Prints a word.
print [Tom Jerry Seymour] Prints a list.

Notice that if Print’s input is a word, the word must be preceded by a
quotation mark. If Print’s input is a list (a group of words), the list must be
enclosed in brackets.

S |

Using the Repeat Command

The Repeat command takes a list of Logo instructions, and runs them again and
again, as if they had been entered separately.

Try:
repeat 6 [forward 50 back 50 right 60] Run a list of
repeat 5 [print [Welcome to Logo!1l] instructions

Edit

Graphics

= —— — — QlGig= — — = — =
repeat 5 [(print [Helcome to Logo!ll
Welcome to Logo!
Helcome to Logo!
Helcome to Logo!
Welcome to Logo!
Welcome to Logo!

12 Communicating With Logo

Remember, Repeat’s first input is the number of repetitions. Repeat’s second
input is an instruction list enclosed in brackets.

Filling Shapes With Patterns

There are many commands you can use to add “special effects” to the drawings
you create. FillSh (for Fill Shape) and SetPPattern (for Set Pen Pattern) are two
such commands. FillSh takes an instruction list as its input (like Repeat). It fills
in the shapes created by the instructions in the instruction list. To get a more
textured effect, you can give the pen a pattern to draw with. SetPPattern sets
the pen’s pattern. For example:

Fill in a shape cg
fillsh [repeat 3 Ifd 70 ri1 12011

Graphics
Change the pen’s pu bk 80 pd
pattern setppattern 4 The number selects

fillsh [repeat 4 [fd 80 rt 9011 a particular pattern.

Graphics

setppattern 0 The pen pattern is back to a solid line.

SetPPattern’s input is a number representing a pattern. Here are some patterns
to experiment with:

0 1 2 3 4 2 b [8 - -

(See Chapter 10, “Graphics”, in the Reference Manial for a complete list of
the pen patterns.)
Opening Windows

When you first start Logo, there is one graphics window and one text window.
Any window may be opened and closed using the menu bar, and named
anything you wish... as long as no other window exists by that name.

To open a new text window:
[1] Choose Open Window from the File menu. A dialog box appears.
[2] Select “Text” as the kind of window and enter any name you like.

(3] Click the Open button.

Name of Window:

[|
® Text

O Graphics

In the top left corner of the screen a new window appears. Click the window,
then place the pointer on the bottom right corner. With the button pressed,
drag the corner to make the window any size you like. Don’t cover the
graphics window — you'll erase your drawings if you do.

Opening Windows 13

Restore the pen’s
pattern

Open a new window

14 Communicating With Logo

In the new window, try a few Logo commands:

e

repeat 4 '[(fd 50 ri S0]

print [one small step for turtles]
print [a giant leap for turtle-kindl]

% File Edit

NewText Graphics
=
T repezat 4 [fd S0 et 20]
print lone small step for turtlies]
oz small step fo urtles
print [a giant leap for turtle-king
q qiant legp for turtle - kind
1 &

Now click the close box at the top left corner of the window to make it
disappear.

Open a new graphics To open a new graphics window:
window
[1] Choose Open Window from the File menu. A dialog box appears.

[2] Select “Graphics” as the kind of window, and type any name you like.

[3] Click the Open button.

Name of Window:
lNewGraphics | ’

O Texnt m

The new graphics window will appear at the top left corner of the screen.

% File Edit

NewGr Graphics

Ko

&

..........

To draw on the new graphics window, use the command SetCurrent. Suppose
you called the new window NewGraphics. This means that SetCurrent’s input

is “NewGraphics.
Try out the following instructions in the text window:

setcurrent "newgraphics Setsthe new graphics window.
repeat 30 [repeat 4 [fd 60 rt 901 rt 12]
setcurrent *"graphics Restores the original window.
€

repeat 30 [repealt 4 [fd 40 rt 901 rt 12]

% File Edit

g et = = ~ o
s

Opening Windows

15

NewbGraphics Graphics

-

L EeEe——————— Tent

setcurrent "newgraphics

repeat 30 [repeat 4 [fd &0 r~t 2901 »t 12]
setourrent "graphics

cg

repeat 20 [repeat 4 [fd 40 vt 901 rt 121

E

BT

Draw on two windows

16 Communicating With Logo

Close the window

Add

Divide

You can restore the screen to its original appearance by closing the new
graphics window. Make the window active by clicking it, then click the close
box at the top left corner.

Calculating With Logo

Logo has a full set of mathematics operations built in. To start with an easy one,
type:

et
print 4 4+ 5

Logo responds:

9

Type:

print 30 / 3

Logo responds:

10

You can use the result of a calculation as an input to a command. For instance:

cg
forward 30+40

The turtle goes forward 70 steps.
You can draw polygons without doing the math yourself:

C
repeat 8 Ltd B rt 360 / 3]

Cc

repeat 5 [fd 50 rt 360 7/ 51

Graphics Graphics

> B

& B/

Turtle Geometry

Experiment by inventing your own polygons. Polygons will be explored in
more depth in Chapter 6, “Drawing Polygons and Spirals”. For a complete
listing of all Logo mathematical operations, refer to Chapter 8, “Mathematics”,
in the Reference Manual.

Reflection

Turtle Geometry

You probably think of shapes as static objects. But, with the turtle, geometric
shapes have a dynamic element because of the process the turtle goes through
to make a shape. The basic turtle commands — Forward, Back, Right, and Left —
describe this process of constructive geometric shapes. These primitive
procedures change the state of the turtle by changing its position or heading.

Inputs

Many Logo procedures need an input in order to produce an effect. In this
chapter, you have already experimented with a few: Forward, Right, Back, Left,
and Print. If you forget the input and merely type:

forward
Logo tells you:
Not enough inputs to FORWARD

Forward, Right, Back, and Left need a number as their input, while Print can use
aword, a list, or a number as its input.

Bugs

As you learn Logo, you will inevitably make mistakes or “bugs”. Bugs indicate
that something unexpected has happened. Most of the time you “debug” by
finding out what happened and correcting it. Sometimes, a bug gives you a new
idea and makes you aim for a different result. Investigating bugs can be one of
the best ways to learn.

17

18 Communicating With Logo

Exploring Further

Try drawing these designs with the turtle:

Note The procedures which create these graphics and the graphics in the
other “Exploring Further” sections are on the Master Logo disk, in a file named
“Exploring Further".

Logo Vocabulary

Note that Logo doesn’t differentiate between capital and lower case letters.
Thus:

FORWARD
forward
FoRwArd
Forward

all have the same effect.

You can see an explanation of any of the procedure names shown in this section.
Select the name and choose Help from the Edit menu.

Commands

Back Bk

CG (for Clear Graphics)
CT (for Clear Text)
FillSh (for Fill Shape)
Forward Fd
HideTurtle HT

Home

Left Lt

PenDown PD
PenErase PE

PenUp PU

Print Pr

Repeat

Right Rt

SetCurrent

SetPPattern (for Set Pen Pattern)
ShowTurtle ST

Special Characters
“(quotation mark) for quoting a

word
|](brackets) for enclosing a list

Operations

+ (plus)
/ (divided by)

Menu ltems

Clear
Open Window

Logo Vocabulary

19

3 Defining Procedures and Using
Subprocedures

You have already instructed the turtle to draw a design such as a square or a
hexagon. To draw it again, you could retype all the Logo instructions. It would
be simpler if you could type one word and get the same result. This can be
done by writing a procedure. Writing a procedure means giving a name to a
series of instructions. Every time you want to run the procedure, you can just
type the procedure’s name rather than all the individual instructions.

Action

Defining Procedures

Here’s an instruction which draws a square:

repeat 4 [fd 50 rt 901

Here’s a longer instruction which draws 20 squares, each at a different angle:

repeat 20 [repeat 4 [fd 50 rt 901 ri 181

Graphics

21

22 Defining Procedures and Using Subprocedures

You could continue to write longer instructions that do more complex
graphics, but at a certain point, the logic becomes difficult to follow. It is easier
to simplify instructions by separating them into individual functions and
naming them.

Define a procedure The instruction that draws a square, for instance, may be defined as a
procedure called Square.

First, choose Open Editor from the File menu.

-

% WAl-W Edit

Load... | : Graphics
Save... /

Open Window... %0 L F?QQ(’\

Open Editor

Close Window

Quit

" & File Edit

Graphics

FARE

A new kind of window called the Editor is on the screen. You can define a new
procedure in the Editor. Choose a name (Square, in this instance), then type:

to square Press Return.

To Square is the title line. To tells Logo that the text that follows is part of a
procedure. Square is the name of the procedure.

Now type the Repeat instruction as shown below. End is always the last line of
the procedure.

to square
repeat 4 [fd 50 rt 90]
end

SJ=—— Editor —£—x

to square [y
repeat 4 (fd SO rt Q01]
end

While the Editor is active, it is just sforing lines of Logo. It does not try to run
them.

In the Editor, all of the text-editing features like Cut, Copy, and Paste are still
available. You can even copy text into or from a text window.

Once you have typed “End”, the procedure definition is complete. Press Enter.
The Editor becomes inactive. Logo responds on the text window:

SQUARE defined

Note While you are defining a procedure in the Editor, press Return to
separate each line. If you accidentally press Enter before the procedure
definition is complete, Logo will respond in the text window:

defined

Defining Procedures

23

Open the Editor

24 Defining Procedures and Using Subprocedures

Try the new procedure Try your new procedure by typing (on the text window):
cg Press Enter.
square Press Enter.
% File Edit K

Graphics E

Editor

to squares
[fd S0 rt 201

repeat 4 [fd S0 rt Q0]

repeat 20 [repeat 4 [fd 50 rt 901 rt 12]
SOURRE defined

cg

squars

Now you can use Square as a command like Forward or Right. If you turn
the turtle slightly and type Square again a new square will appear:

¢t 30
square

With the name Square replacing the instruction Repeat 4 [Fd 50 Rt 90],
the complex Logo instruction:

repeat 20 [repeat 4 [fd 50 rt 901 rt 181
becomes:
repeat 20 [square rt 181

These spinning squares may also be defined as a procedure.

Fixing Bugs in a Procedure

Click the Editor to make it active. Choose Clear from the Edit menu to clear
this window. Then type:

to spinsquare Title line.
repeat 20 [square rt 18] Body ofprocedure.
end Last line.

Press Enter. Now clear the graphics window with CG and try SpinSquare.

" & File Edit

Graphics

Editor
to spinsquare
repeat 20 (square rt 18]
¢ end

Fixing Bugs in a Procedure

25

When you try out Square or SpinSquare, you may not get the expected result Edit a procedure
because there is a bug in the procedure. The bug may be a typing mistake,

incorrect spacing, or the absence of an input. For instance, if there is a bug in

SpinSquare, just click the editor window. The procedure is still there. You can

then edit the procedure to fix the bug.

If the procedure has been cleared from the editor window, you can put it back
by typing:

edit "spinsquare

in the text window. Logo will make the Editor active with only the SpinSquare
procedure in it.

When you have finished editing, press Enter. The text window becomes active
again, and Logo responds:

SPINSQUARE defined

26 Defining Procedures and Using Subprocedures

Using Square and SpinSquare, create designs like these:

Graphics Graphics

'E.Ei'_!

c
pgnreverse spinsquare
spinsquare

pendown

repeat 2 [spinsquare rt 8]

Note If you hide the turtle, it will draw even faster.

Using Cut and Paste to Edit

You don’t have to retype instructions each time you enter the Editor. If there
is something you like in a text window that you want to define, just select the
line or lines and choose Cut or Copy from the Edit menu. Click the Editor.
Then type To and the name you choose. Press Return and choose Paste from
the Edit menu. The line or lines that you cut or copied will be pasted in at the
insertion point in the Editor. Type End on the last line and press Enter. The
new procedure is now defined.

Drawing a Starry Sky

The power of Logo programming comes from using procedures to build other
procedures, just as Square was used to create SpinSquare.

Click the Editor to write a procedure named Star that draws a number of lines
around a single point:

to star
repeat 18 [fd 10 bk 10 rt 20]

end

Graphics

You can use this procedure to draw several stars, each at a different place.

To ensure that the turtle moves to a new location before drawing each star, use
the Random operation. Random produces a random number that’s less than
the number given as its input. On the text window try:

print random © Press Enter.

Move the insertion point back to Print Random 6 and press Enter again.
A different number will probably result.

By using Random as an input to Forward and Right, you can turn the turtle
an unpredictable amount and move the turtle an unpredictable distance.
Type this procedure in the Editor:

to move

rt random 360 Random turn.
fd random 150 Random distance.
end

With Move defined, try:

c
repeat 10 [move starl

Graphics

Drawing a Starry Sky 27

Use the Random
operation

28 Defining Procedures and Using Subprocedures

Fix a bug : A bug! The turtle draws a line as it moves, spoiling the illusion of a starry sky.
Edit the Move procedure by clicking the Editor:

to move

penup Lift the pen before moving,
rt random 360

fd random 150

pendown Put the pen down afterwards.
end Press Enter to redefine Move.
Try it again:

G

repeat 10 [move star]l

Graphics

*

Y.

FHK.

Writing a Superprocedure

Now that a sky full of stars is working, a single procedure could run Move
and Star. The name for a procedure which uses other procedures is a
superprocedure. The name for a procedure which is used by another
procedure is a subprocedure. Here's a simple superprocedure called Sky.

to sky
repeat 8 [move star]
end

If you want more stars, change the Repeat number.

Writing a Superprocedure

Important It’s best not to quit Logo or turn off your computer now. If you
do, you'll lose all your procedures. Before quitting, read the next chapter,
“Examining Your Workspace and Saving Files”, which explains how to save
your procedures on a disk.

Printing Your Pictures

If you create a picture you like, it’s easy to print it out on a printer. The key
combination 38-SHIFT-4 prints the active window (click a window to make it
active). To print the entire screen, press the Caps Lock key before pressing the
3¢ -SHIFT-4 keys.

Reflection

Naming

Naming a procedure is an essential part of the Logo language. Logo starts with
a basic set of words, known as primitive procedures. Each time you define a
procedure, you add a word to Logo’s vocabulary. This lets you customize the
language.

It is helpful to name a procedure in terms of its function. For example:

to house
walls
roof
door

end

29

30 Defining Procedures and Using Subprocedures

Total Turtle Trip

More Turtle Geometry

By now, you have probably noticed that the turtle turns a total of 360 degrees
when drawing a square or a triangle or when it goes around and ends up where
it started, as in Star. A general principle of turtle geometry called the Total
Turtle Trip states that the turtle turns a total of 360 degrees to draw any closed
figure if the turtle starts and ends facing the same direction. Therefore, each
turn of a triangle equals 360/3; a square, 360/4; a hexagon, 360/6, and so on.

Superprocedures and Subprocedures

Sky has two subprocedures, Move and Star. Subprocedures make
superprocedures more concise and make debugging easier. When Logo prints
an error message, it indicates in which procedure the bug occurred.

How does Logo run a superprocedure having subprocedures? Sky’s
instructions are run one by one. When the instruction Move is called, Move's
instructions are also run one by one. When they are finished, Sky continues
with its next instruction to call Star. Star’s instructions are then run one by one.

sky

Fepeal 8 [|moue| |stﬂr|i|

penup | repeat 18 [fd 10 bk 10 rt 20]
rt random 360
fd random 150
pendown

Commands and Operations

There are two kinds of Logo procedures. Most of the procedures you have
used so far are commands. Forward is the command to move the turtle, Right
to turn, Print to print, PenUp to raise the turtle’s pen.

You have also used the second kind of Logo procedure called an operation. An
operation produces or “outputs” something to be used as an input. Random is
an operation that produces a random number. The + sign is a familiar
operation that produces the sum of its two inputs.

Commands and Operations 31

Operations like Random and + can only be used as inputs to other procedures. Use an operation
For example: as an input
print 5 + b 11 will be printed.

fd random 50 The turtle will go forward a random amount.

If an operation is the only thing on a line, as if it were a command, Logo
complains:

random 50
You don’t say what to do with 23

11 + 29
You don‘t say what to do with 40

The first word on an instruction line must always be a command.

Exploring Further

As you have seen, once you have defined a procedure, it can be used as a tool
for building other procedures. Here are some ideas for using SpinSquare and

Sky.

Using SetPPattern, change the pattern of squares in SpinSquare, or stars in Sky.

Graphics Graphics Graphics

SN

32 Defining Procedures and Using Subprocedures

FatSquares uses Move and SpinSquare as subprocedures. The command,
SetPWidth (for Set Pen Width), changes the width of lines drawn.

to fatsquares

setpwidth 2 Sets the pen width to 2,
move spinsquare

setpwidih 4 Sets the pen width to 4.
move spinsquare

setpwidih 1 Restores the pen width to 1.
end

Try using PenReverse with SpinSquare to create an unusual effect.

Note The procedures which create these graphics and the graphics in the
other “Exploring Further” sections are on the Master Logo disk, in a file named
“Exploring Further”.

Logo Vocabulary
Commands Operations
Edit Random

PenReverse PX
SetPWidth (for Set Pen Width)
Special Words Menu ltems

End Open Editor
To

33

4 Examining Your Workspace
and Saving Files

When you define procedures, Logo puts them in your workspace — a space in
computer memory. When you quit Logo or turn off the computer, the
information in the workspace is destroyed. To store your procedures
permanently, you must copy them onto a disk. Procedures saved on a disk can
be compared to files kept in a filing cabinet for permanent storage.

This chapter explains how to examine your workspace, and how to save
procedures on a disk.

Action

Examining Your Workspace

There are several commands that allow you to examine your workspace.
To print the titles of the defined procedures that are in your workspace, type:

pots Print out procedure

titles
for Print Out Titles.

If you haven’t quit Logo since Chapter 3, all the procedure names you defined
are displayed in the text window,

S[[BD———=— Texl
pots
TO FATSQUARES
TO MOVE
TO SKY

TO SFINSQUARE
TO SOURRE
TO STAR

Note I1fPOTS doesn’t have any effect, you've probably just started up Logo
and there are no procedures in your workspace for POTS to display. In this
case, it’s a good idea to go back to Chapter 3 and write a few procedures, so
you can try out the new commands in this chapter.

34 Examining Your Workspace and Saving Files

Print out procedure
definitions

Erase procedures

To print out the definition of a procedure, use the command POP (for Print
Out Procedure). For example, if the Square procedure is in your workspace:

pop "square A quotation mark precedes a name.
prints:

TO SQUARE
repeat 4 [fd 50 ri 901
END

You can also print the definitions of a list of procedure names:
pop [star skyl Brackets enclose a list.

To list all the procedure definitions in your workspace, use the Procedures
operation as POP’s input. Procedures outputs all the procedure names
currently in your workspace. Try:

pop procedures

The procedure listings may scroll right off the text window, but you can move
your viewing area up and down with the scroll bar.

Erasing From the Workspace

As you view your procedures, you may notice “buggy” procedures or
procedures you no longer need and don’t want to save, Use the command
EraseProc (for Erase Procedure) to erase one procedure or a list of
procedures. First, clean the Editor by choosing Clear from the Edit menu, so
you won't accidentally redefine the procedures in the Editor.

Note The names used here are not names of procedures you've defined,
since you don’t want to erase anything useful.

eraseproc "Fred Remember the quotation mark.
would erase the procedure called Fred.
eraseproc [setup starcirclel] Remember the brackets.

would erase the Setup and StarCircle procedures.

Saving Your Workspace

Choose Save from the File menu to save your workspace into a disk file that
you will name.

Save in File Named:
[starshapes| |

@® Workspace m
O Window

Master Logo

(Eject] (prive]

Click Workspace, then enter a name, such as StarShapes. Click Save. Now the
workspace will be saved on a disk, in a file with the name StarShapes.

Listing Files

To check which files are on your disk, choose Load from the File menu. The

Load box appears. Click Workspace to list the names of all the program files on
the disk.

You should see the filename you just saved on this screen of information:

Demo Menu
Graphs

Multiwindows
Quinpatterns

Samples Menu
spirals] e

STARSHAPES &l Masterl...
@® Workspace
O indouw

Click Cancel to make the Load box disappear.

Saving Your Workspace 35

36 Examining Your Workspace and Saving Files

Clearing Your Workspace

The ErAll command Normally, you save your workspace when you've finished a project, or at the
end of a programming session. Before beginning a new project or retrieving
other files from your disk, it’s a good idea to clear out your workspace. To do
this, use ErAll (for Erase All) .

Note Use ErAll only after you have saved your workspace on a disk.

Try:

erall

Now type:

pots

No procedure titles are printed because everything has been erased.

Once you have saved your procedures, you can choose Quit from the File
menu to exit Logo without losing any of your procedures.

The Finder will display your file:

& File Edit Uiew Special

=] Master Logo
10 items 354K in disk 46K available
K
b
¢ = o
0 @ @ B
System Folder Demo Files Preferences Lago Demo Menu

mm.

Empty Falder Samples File Primitive Set STARSHAPES iamples Menu

Loading Files
Loading Files

When you want to retrieve your procedure files from a disk, choose Load from
the File menu. When the Load box appears, click Workspace and then the
filename (for example, StarShapes).

Use POTS to see what is in your workspace now. Loading a file doesn’t erase
what is in your workspace. If you already have procedures in your workspace,
the procedures loaded from the disk are added to those already in the
workspace. Any procedure in your workspace with the same name as one in
the file being loaded will be replaced by the new procedure.

Erasing Files

To erase a file permanently from disk, use the command EraseFile
(ErF for short). Its input is a filename, as in:

erasefile "Fredfile

Warning Use this command with caution because its effect is permanent.

Saving and Loading Windows

The drawings in the graphics window can be saved in the same way as your
workspace. If there is a picture in the window (for example, the stars):

[1] Click the graphics window to make it active.

[2] Choose Save in the File menu.

[3] When the Save box appears, select Window (instead of Workspace).
[4] Enter a name, such as MyPicture.

[5] Click the Save button.

37

38 Examining Your Workspace and Saving Files

The picture in the graphics window will be saved under the filename you
choose.

Save in File Named:
[MyPicture |

O Workspace m

® windouw

Master Logo

(Eject] [Drive)

Note that graphics files have a unique icon. Double-clicking this icon does not
load the file.

MYFICTURE

To load the file back into the graphics window, simply choose Load from the
File menu, and choose the filename. Make sure a graphics window is active
when you want to load a graphics file; otherwise, the Load box will display
only the names of text files. With a graphics window active, the Load box will
display the names of graphics files.

For more information on workspace and file handling, refer to Chapter 5,
“Workspace Management and Disk Drive Control”, and Chapter 9, “Device
Management”, in the Reference Manual.

Distinguishing Workspace From File Space

Reflection

Distinguishing Workspace From File Space

Defined procedures exist in your workspace only while the computer is on.
Procedures in a disk file are permanently recorded. When you save a file, you
are putting a copy of your workspace on the disk. When you load a file from a
disk, you are putting a copy of the file in your workspace. The file on your disk
remains the same.

Remember, when you edit procedures that have already been saved in a file,
you must replace the old file with the updated version or simply save a new

version of the file. When saving a new file, you shouldn’t use two words for a
name, or use the name of a file that already exists on the disk.

Naming Files

Most often, a file is a set of procedures, which are each part of the same
program. For example, the procedures in the file StarShapes are part of the Sky
program. Giving your file a meaningful name helps you retrieve it later. The
examples here avoid naming a file by the same name as one of the procedures,
to remind you that your file is a sef of procedures and not only one procedure.

Logo Vocabulary
Commands Operations
ErAll (for Erase All) Procedures

EraseFile ErF

EraseProc ErP (for Erase
Procedure)

POProc POP (for Print Out
Procedures)

POTS (for Print Out Titles)

Menu ltems

Load
Save

39

5 Using Variables

Some primitive procedures require inputs. For example, Forward needs an
input to tell Logo how many steps to make the turtle move; Right and Left need
inputs to tell Logo how many degrees to turn the turtle. The function of these
primitives is constant. When executed, Right always turns the turtle clockwise.
However, the input to Right is variable. Whatever value is given as Right’s
input determines the amount the turtle turns.

CT is a primitive procedure that requires no input. The defined procedures
Square and Star, like CT, need no inputs. Square and Star produce exactly the
same actions on the screen each time they are run.

If you wanted the turtle to draw squares of different sizes, you could write a
series of procedures like Square10, Square20, Square30, etc., but that would be
cumbersome. Instead of many procedures to draw squares of specific sizes,
you can define a general procedure that will draw squares of any size, by
writing a procedure that uses an input to specify the size of the square. This
means that:

Square 20 will make a small square
Square 200 will make a huge square

41

42 Using Variables

What is the : (colon)?

Add an input to Square

Action

Defining Procedures With Inputs

Choose Load from the File menu and select the StarShapes file that you saved
in the previous chapter. Now edit Square to give it an input for its size:

edit '"square

If the Square procedure is in your workspace, it will appear in the Editor:

TO SQUARE
repeat 4 [fd 50 rt 901
EN

The length of each side of the square is determined by Ed’s input. To make the
procedure create all sizes of squares, Fd's input must be made variable. This
can be done by giving a name to the input. The name Size would be
appropriate. Replace 50 with :§ize in the procedure. The : (colon) preceding
Size tells Logo that Size is a name that represents a value, not the name ofa
procedure. Think of the : (colon) as saying “the thing that is called”.

TO SQUARE
repeat 4 [fd :size ri 90]
END

An important detail — on the title line (To Square), you must indicate that
Square has an input called Size. This is what the new Square procedure should
look like:

TO SQUARE :size Size on the title line.
repeat 4 [fd :size rt 901] SizeasFdsinput.
END

Defining Procedures With Inputs 43

Press Enter to define the revised procedure, then try it:

square 10
square 20
square 30
square 40
square 50

Graphics

;1

What happens if you forget to give Square an input? If you type:
square

Logo responds:

Not enough inputs to SQUARE

Checking for Possible Bugs

If your new Square procedure doesn’t work, check for the following bugs:

B No:(colon) preceding Size
B A space between : (colon) and Size

B A typing mistake. For example, :Size on the title line and :Sise within the
procedure

B When running Square, you put a : (colon) preceding the input number. For
example, Square :50

44 Using Variables

Define a procedure
with two inputs

Add an input to Star

Defining a Text Procedure With Inputs

Inputs are useful for all kinds of defined procedures, not just graphics. An input
can be a word or a list as well as a number. For example, define a new
procedure called Many that has two inputs.

to many :times :message
repeat :times [print :messagel
end

Note Use the horizontal scroll bar to see a line that’s longer than the editor
window width.

Try:
many 3 "Judy
Logo responds:

Judy
Judy
Judy

Since Print will print words, numbers, or lists, Many’s second input can be any
of these. Since Repeat’s first input must be a number, Many'’s first input also
must be a number.

many 10 [Alphonse Q. McKoy]
many 10 2000

Creating a Variable Sized Star

Now edit Star to take an input.

edit "“star

If the Star procedure is in your workspace, it will appear in the Editor:

TO STAR

repeat 18 [fd 10 bk 10 rt 201

END

Edit Star and add an input for the length of the lines:

TO STAR :length :Length on the title line.
repeat 18 [fd :length bk :length rt 201
END :Length as input for Fd

and Bk.

Creating a Variable Sized Star 45
Now try:

star 10
o
star 50

Graphics Graphics

*

You may want to edit Sky so you can choose the size of stars in the sky. Here
are the original definitions of Sky and Move (Sky’s subprocedure):

TO SKY
repeat 8 [move starl
END

TO MOVE

penu

rt random 360
fd random 150
endown

ND

If you run Sky as is, Logo complains:
Not enough inputs to STAR in SKY

Of course, Star requires an input in order to work. Sky also needs an input on
the title line:

TO SKY :size Input on the title line. Add an input to Sky
repeat 8 [move star :sizel Input for Star.

END

46 Using Variables

Experiment with Sky now:

sky 40

Graphics

You may want to add another input to Sky — the number of stars to draw:

TOD SKY :amount :size
repeat :amount [move star :sizel
EN

Remember that Sky now takes two inputs when you run it:

c€g
sky 35 10 35 is the Amount.
10 is the Size.

Graphics

« ¥

AN,

Creating a Variable Sized Star

47

Reflection
The idea of variables is a powerful one. Variables allow you to make your Use inputs as
procedures, whether they manipulate graphics, text, or numbers, more variables

flexible. A variable in a graphics procedure may allow you to vary its size with
the same procedure. To help you remember what a variable does, use a
meaningful name, like Size.

When you defined Square, you wanted to give Forward an input of some
variable number, so you named it Size. Naming an input lets you refer to it in
general terms. In Logo, :Size refers to whatever happens to have the value of
Size. How do you give Size a value? When you type Square 10 or Square 25,
Size takes the value of 10, 25, or whatever number you type as input.

The value of a variable can be passed from a superprocedure to a
subprocedure. For example, the Sky procedure passes the value of :Size to Star.

Exploring Further
Try other ways of using variables. For example:

B Circle with input for Size

B Arcs of Circles with inputs for the size and degree of the arc

/

b Y . N N Y T Y S

S s s v il 7
A Ayl £ 5

NN A

a7

Note The procedures which create these graphics and the graphics in the
other “‘Exploring Further’’ sections are on the Master Logo disk, in a file
named ‘‘Exploring Further”.

48 Using Variables

Logo Vocabulary

Special characters

: (colon) for “the thing that is called”

6 Drawing Polygons and Spirals

Just as you can vary the number of steps the turtle takes, you can also vary how

much it turns. In fact, you can produce some beautiful and surprising designs
by varying both these components. A procedure for drawing polygons which
takes these components as inputs will be defined in this chapter. This
procedure is recursive; it runs itself as a subprocedure. The chapter will also
suggest ways of experimenting with and exploring polygons.

Action

Drawing Polygons

The Poly procedure takes two inputs: one for the number of turtle steps; the
other, the amount to turn:

to poly :step :angle

fd istep

rt :angle

poly :step :angle The recursive line.
end

The last line of Poly before End is the recursive line. This is an instruction to
run Poly as a subprocedure.

49

What is the recursive
line?

50 Drawing Polygons and Spirals

Stop a recursive
procedure

Now try it! (Show the turtle before running Poly so you can see the process.)

poly 60 90

" » = 9
® {lie d
finds w7 Graphics
fut =i
to poly .
fd :std Lopy e e G
rtoang paste Wi
(=] 9
gndg {ipar O
Salact B Wf

B 1

Help i |

A square! Choose Stop (from the Edit menu) to stop Poly. Stop signals Logo to
stop what it is doing,.

Try Poly with other inputs. For example:

poly 60 120
poly 60 72
poly 75 160

> [

As you change the Angle input, notice that the shape of the polygon changes.
Experiment with other inputs for Poly. How many different kinds of shapes can
you produce? Try to predict the kind of polygon a particular angle will
produce.

Defining a Sun

Defining a Sun

The Sun procedure resembles Poly except that it moves the turtle back before
turning. Its designs look like sun rays because of the inputs for the forward
step, back step and turn. Here is Sun’s definition:

to sun :fdstep :bkstep :turn

fd :fdstep

bk :bkstep

rf ateern

sun :fdﬁtep :bkstep :turn Therecursive line.
end

The recursive line instructs Sun to run itself as a subprocedure.

Try:

sun /70 60 20
sun 30 50 25

Choose Stop to stop the procedure.

Try other inputs. What will happen if Sun’s second input is zero? What will
happen if FdStep and BkStep are equal?

51

52 Drawing Polygons and Spirals

Use comments
in a procedure

Drawing Spirals

Both Poly and Sun instruct the turtle to draw closed figures. The turtle goes
forward and rotates to get back to where it started.

To draw a spiral, the turtle should not go back to where it started. Instead, the
turtle should increase its forward step on each round so that it moves further
and further away from its starting point.

Do this by slightly increasing the value of Step on the recursive line. Edit Poly
to define Spi by changing the title and recursive lines.

Add a comment in the procedure definition to help you (or someone else)
understand what the procedure does. A comment is a line following a
semicolon (;). The semicolon signals Logo to ignore the rest of the line,

to spi :step :angle The title line.

fd :stlep

rt :angle

;step increases on each round Thecomment
spi :step + 3 :angle The recursive line.
end

Notice the difference in the recursive lines of Spi and Poly. Poly’s recursive
line is an exact copy of its title line. This means that each round of recursion is
exactly like the previous one. Spi’s recursive line is not an exact copy: 3 is
added to the value of Step. When each Spi subprocedure runs, it draws a
longer side.

Now, experiment with Spi. (Choose Stop to stop.)

spi 5 90
spi 0 122
spi 5 160

[5]

You can make Spi more interesting by making the increment + 3 variable. This
will become a third input named Inc. Spi will add :Inc to :Step, instead of 3. :Inc
will allow you to vary the amount added to the number of turtle steps by
choosing different numbers for its input.

to spi istep :angle :inc

fd 1=atep

rt :angle

;step increases on each round
apl afep + z21inec imngle :ine
end

Drawing Spirals

53

54 Drawing Polygons and Spirals

For example:

S5pi 1 e 2

File

oo : e Graphics

£Eut

{opy

Paste

{irar !
Select B ¥A

Do it

fiein

Try varying the third input to produce different effects.

Reflection

Experimenting

Throughout this book, you are encouraged to experiment with ideas other
than those presented here. However, it is not always obvious how to explore
the primitive procedures and concepts presented. This chapter provides you
with three procedures that produce exciting effects. You can explore Poly, Sun,
and Spi graphically to create exciting designs, or write your own procedures to
produce other recursive designs.

Total Turtle Trip Revised
Total Turtle Trip Revised

According to the Total Turtle Trip, the turtle will turn a total of 360 degrees to
complete the trip around any closed figure when the turtle starts and ends
with the same position and heading.

However, if you follow the turtle’s trip around a star polygon, you'll notice an
aberration. For example, Poly 50 144, a five-pointed star, makes the turtle turn
a total of 720 (144 * 5) degrees. The turtle completes a full rotation twice.
When turning around the third point of the star, the turtle rotates through its
initial heading. Verify this phenomenon for different stars. The Total Turtle
Trip must now be revised as follows:

The turtle will turn a total of 360 degrees or a mulitiple of 360 degrees to
complete the trip around any closed figure when the turtle starts and ends
with the same position and heading.

Recursion

You have seen a few examples of recursion: Poly runs Poly as part of its
definition, Sun runs Sun, and Spi runs Spi. What is recursion all about?

Consider this recursive riddle:
If you had two wishes, what would your second wish be?
Answer: Two more wishes.

Nested Russian dolls is another example which works much like Spi. A painting
inside another painting, a movie within a movie, a story within a story like “A
Thousand and One Arabian Nights”, are all examples of recursion,

The notion that recursion continues forever gives us a chance to play with
infinity. The easiest way of making a recursive procedure stop is by choosing
Stop from the Edit menu. The next chapter explores ways of embedding a
“stop rule” in a recursive procedure, enabling you to specify the condition
when the procedure will stop.

55

56 Drawing Polygons and Spirals

Exploring Further

Modify Spi so it draws from the outside in rather than from the inside out.
Try Spi and Poly with different pen patterns.

What will happen if Spi increases the angle instead of the forward step? Write a
procedure to experiment.

Write a Shrink-Grow procedure that alternately decreases and increases the
forward step while keeping the angle constant at 90 degrees.

Note The procedures which create these graphics and the graphics in the
other ‘‘Exploring Further’ sections are on the Master Logo disk, in a file
named “‘Exploring Further™.

Logo Vocabulary

Special Characters Menu Items

: (semicolon) for a comment line Stop

7 Exploring Recursive Procedures

This chapter discusses various kinds of recursive procedures and different
ways of stopping them within the procedures themselves.

Action

Creating Stop Rules

Recursive procedures such as those illustrated in the previous chapter won't
stop unless you choose Stop. For example:

to spi :step :angle :inc

fd :step rt :angle

spi :step + :inc :angle :inc
end

Try:
spi 10 123 5

You must choose Stop to end the spiral. However, you can modify this
procedure to stop another way. In fact, creating appropriate stop rules is an
essential part of writing recursive procedures.

Note If you encounter the Not enough symbol space message, use the
Recycle command. Recycle clears all unneccessary symbols from your
workspace. For more information, see Appendix D, “Memory Space”, in the
Reference Manual.

57

58 Exploring Recursive Procedures

The > (greater than)
operation

Place the stop rule

Writing a Stop Rule for Spi

Suppose you decide that Spi should stop if the length of a side (:Step) is greater
than 175. Then, insert this line in the procedure:

if :step > 175 [stopl

Where should the stop rule be placed? Try putting it immediately after the title
line:

to spi :step :angle :inc

if :step > 175 [stopl The stop rule
fd :step ri :angle

spi :step + :inc tangle :inc

end

Run Spi 10 123 5. Experiment with placing the stop rule on different lines of
the procedure. What happens if the stop rule is at the end of the procedure?
Do you get different effects? Experiment also with changing the limit of :Step in
the stop rule; for example, 250 instead of 175.

Writing a Stop Rule for Poly
Writing a stop rule for Poly is a little trickier. Poly looks like this:

to poly :step :angle
fd :step

rt :angle

poly :step :angle
end

Poly completes a figure when the turtle returns to its starting state — its
original position and heading. This means that the turtle must turn 360 degrees
or a multiple of 360 degrees.

You need to know what the turtle’s heading is when it starts, and then compare
that to the turtle’s heading after each turn. The primitive procedure called
Heading will help you do this. Heading is an operation that outputs the turtle’s
heading as a number between 0 and 360. So, before running Poly, make Logo
remember the turtle’s heading. Do this by naming the heading Start with the
Name command:

name heading “start Heading gives the turtle’s
current heading.

Writing a Stop Rule for Poly 59

Name’s second input is the name we are giving to the information produced by The Name command
Heading. Since Start is a name, it is preceded by a quotation mark. To see the
information Start contains, put a : (colon) in front of Start.

print :start
If the graphics window has just been cleared, Logo responds:
0 The turtle is pointing straight up.

The following stop rule for Poly checks that the turtle’s current heading (the
direction the turtle is facing at that moment) is the same as :Start.

if heading = :start [stop]

When you put this stop rule into the procedure, make sure it’s placed after the
Rt command. If you put the stop rule before the Rt command, Poly stops
immediately, before the turtle starts drawing!

to poly :step :angle Place the stop rule
fd :step

rt :angle

if heading = :start [stopl] The stoprule.

poly :step :angle

end

Now, try Poly.

There is a problem here. You must remember to name the starting heading
before you run Poly, or the stop rule will not work.

It is best to put that action into a procedure. Write a superprocedure called
SuperPoly which gives Start a value and then runs Poly.

to superpoly :step :angle
name heading "start

poly :step :angle

en

60 Exploring Recursive Procedures

Give Poly
a third input

Use Heading as an
input

Create a text triangle

The ButFirst operation

Now SuperPoly does the whole job.

Another way to give Start a value is to add the input :Start to the title and
recursive lines:

to poly :step :angle :start :Start on the title line.
fd :step rt :angle

if heading = :start [stopl

ley :step :angle :start :Start on the recursive line.
end

To run Poly, you must also give it a third input which refers to the starting
heading. This input can be the operation Heading. This way, Logo calculates
the starting heading, which becomes the value of Start. For instance:

rt 90
poly 90 144 heading

If you don’t want to type Heading each time you run Poly, make SuperPoly its
superprocedure.

to superpoly :step :angle
poly :step :angle heading
end

Writing a Stop Rule for Words and Lists

This simple recursive procedure removes one letter at a time from a word
(or one word at a time from a list). It creates a kind of triangle.

to triangle :object

prini :object

triangle butfirst :object
end

ButFirst (or BF) outputs all but the first element of its input. With ButFirst on
the recursive line, :Object loses one element each time Triangle is called.

Writing a Stop Rule for Words and Lists 61

N ————mmm—=m———— Tent E—I
triangle “Logo =
Logo =
ogo
go
o
BUTFIRST doesn't like as input in TRIANGLE =]
I -

i)

Triangle has a bug. Logo complains because :Object becomes an empty word —
a word with no characters. ButFirst tries to take this empty word as its input.

This bug can be fixed by making Triangle stop when its input is empty. The
stop rule to do this is:

if emptyp :ob]ect [stop]

EmptyP (P stands for Predicate) outputs True if its input, a word or a list, is The EmptyP operation
empty (contains no elements).

Where should the stop rule be placed?

This example makes the stop rule the first line after the title line in Triangle:

to triangle :object Place the stop rule
if emptyp :object [stopl The stoprule.

print :object

triangle butfirst :object

end

Experiment with placing the stop rule after the Print line.

62 Exploring Recursive Procedures

Add graphics
instructions after the
recursive line

Now, try:
triangle "Logo
triangle [going going going gonel

Adding Instructions After the Recursive Line

Procedures ending with a recursive line are not the only kind of recursive
procedures. In fact, instructions after the recursive line produce powerful and
sometimes unexpected effects.

This different kind of spiral stops at a specified heading:

to curl :step :angle :heading
fd :step ri :angle

if heading = :heading [stop]l
curl :step + .5 :angle :heading
end

For example, try:
ciigl '8 15 2720
curl 5 15 0

For variation, add a few more turtle actions after the recursive line. For
example, edit Curl to add:

fd :step 11 :angle
and change Curl’s name to Surprise on the title and recursive lines:

1o surprise :siep :angle theading
fd :step rt iangle

if heading = :heading [stopl
surprise :step + .5 :fangle :heading
fd :step i 5 ¢ :angle The new line.

end

Conditions, Actions, and Predicates 63

What do you expect will happen?
surprise § 15 2710
surprise 5 20 0
Experiment with different inputs.

Now add Print :Object after the recursive line in Triangle to see its effect.
Change Triangle’s name to Tri2:

to tri2 :object
if emptyp tobject [stopl
rint :object
tri2 butfirst :object
print :object The new line.
end

Predict what the new line will print if you run Tri2 “Logo.

Now try it.

Reflection

Conditions, Actions, and Predicates

The If command needs two inputs: a condition and an action that is carried out
if the condition is True. An action is a list of Logo instructions. Like other lists,
it's enclosed in brackets [|. The condition is expressed with a special kind of
operation called a predicate, a word that asks whether something is True or
False. The P in EmptyP reminds you it’s a predicate. Some other Logo
predicates are > (greater than) and = (equals).

Add a Print instruction
after the recursive line

What is a predicate?

64 Exploring Recursive Procedures

Recursion With Words and Graphics

Compare the effect of a recursive procedure like Triangle with a graphics
procedure that spirals inward.

to triangle :object Prints a text triangle,
if emptyp :object [stop]

print :object

iriangle butfirst :object

end

to spiralin :step :angle Draws a spiral.
Af s:atep < 1 [stopl

fd :step rt :angle

spiralin :istep - 2 :angle

end

For example:

spiralin 90 90

Graphics

=

In Triangle, ButFirst on the recursive line removes the first element of its input
each time Triangle is called. In Spiralln, :Step — 2 on the recursive line makes
the line drawn by the Fd command shorter each time Spiralln is called.

The stop rule in Triangle uses the EmptyP operation to check if the word or list
is empty of elements. Another way to determine if a word or list is empty is to
check whether the number of elements is 0. In Spiralln, the stop rule checks if
:Step is less than 1.

Thinking About Recursion

Run Tri2 “go and look at the result. The following telescoping model mirrors
that result. The “Process” column shows the process, or flow of control for
Tri2 “go. The “Result” column shows the results that are printed on the
window.

Process Result

triz "go
if emptqp go [stop]

print "go- go
triz bf "go
triz "o
if emptgp 0 [stup]
print "o e B
triz bf "o
triz "
if emptyp " [stopl—i s2ops
print "0 e
end

Remember: the recursive line is where Tri2 runs itself as a subprocedure.
When Tri2 “ stops, each subprocedure (Tri2 “o and Tri2 “go) must finish. This
means running the remaining lines of the procedure definition.

Thinking About Recursion 65

66 Exploring Recursive Procedures

Exploring Further

Write your own recursive procedure. Add some actions after the recursive line
and check the results.

Note The procedures which create these graphics and the graphics in the
other ““Exploring Further’’ sections are on the Master Logo disk, in a file
named ‘‘Exploring Further’’.

Logo Vocabulary

Commands Operations

If = (equals)
Name > (greater than)
Stop < (less than)
Recycle ButFirst BF

EmptyP (P for Predicate)
Heading

8 Creating a Bar Graph Project

In this chapter, you will develop a project to draw a bar graph. You’ll learn
several new programming ideas: the interactive program, the technique for
printing text on the graphics screen, and manipulating windows under
program control.

The interactive program creates a dialog between the computer and the
person at the keyboard. An interactive Logo program can be written so
everyday English words and sentences are used for questions and answers.

The Scenario

Here is an example of a bar graph program which uses interaction to draw the
bars.

The turtle draws the axes of the graph.

67

68 Creating a Bar Graph Project
Then Logo asks:
How many computers were sold in 817
You type:
1000

Logo calculates a distance to represent 1000, and the turtle draws the first bar
of that height.

W - S,

Logo asks:

How many computers were sold in 827
You type:

2000

Logo calculates the distance and the turtle draws the second bar.

Logo asks:

How many computers were sold in 837
You type:

5000

Logo calculates the distance and the turtle draws the third bar.

all

Logo asks:

How many computers were sold in 847
You type:

10000

The turtle draws the fourth bar.

The Scenario 69

70

Creating a Bar Graph Project

The Plan

Planning is an important part of a programming project. Before starting a
project like this one, divide the task into its logical steps:

Step 1: Set up the windows.

Step 2: Draw the picture:
« of the axes, with a marked scale on the y-axis.
* of the bars, side by side on the graph.

Step 3: Make the program interactive by using data from the keyboard to
determine the height of each bar.

Step 4: Label the graph and each bar.

Step 5: Write a superprocedure, putting everything together in an easy-to-use
way.

Step 6: Add the finishing touches to the program by controlling the initial
window set-up.

Note A listing of all the procedures making up the bar graph program can be
found at the end of this chapter. There is also a diagram showing the structure
of the program.

Action

Step 1: Setting Up the Windows

In any project, it is necessary to set up the initial conditions for running the
program. At this point, this means clearing the text and graphics windows and
hiding the turtle before drawing the graph. Here is a simple SetUp procedure:

to setup

recycle Recycle the memory.
ct Clear the text.

cg ht Clear the graphics.

end

Step 2: Drawing the Axes and the Bars
Step 2: Drawing the Axes and the Bars

The y-axis will have a scale marked along it. It’s useful to have a general
procedure that draws the marks. The interval for the scale marks is variable:

to drawmarks :int
repeat 120 / :int [fd :int rt 90 fd 5 bk 5 1t 901

end

Now write a procedure to draw the y-axis, giving it a scaling interval as input.
(DrawMarks will be a subprocedure of the YAxis procedure.)

71

This procedure uses SetHeading (SetH for short) to change the turtle’s heading. The SetHeading
SetHeading sets the turtle’s heading in absolute terms like a compass — 0 is command
straight up.

to yaxis :scale Draw the y-axis
setheading 0 Sets the turtle’s heading.

drawmarks :scale Draws the marks.

bk 120

end

Try:

yaxis 20

cg yaxis 10

72 Creating a Bar Graph Project

XAxis does not have a subprocedure, since it doesn’t need marked intervals:

Draw the x-axis to xaxis

setheading 90 Sets the turtle’s heading.
fd 200 bk 200

1t ‘20

end

Try it:

xaxis

Graphics

TTITLET

The SetPos command SetPos is a command that sets the turtle’s position in terms of x and y
coordinates. [0 0] is the center of the graphics window:

pu setpos [-100 -551 pd

Use the Pos operation to check the turtle’s position:
print pos

Logo responds

-100 -55

Step 2: Drawing the Axes and the Bars 73
DrawAxes is the superprocedure. It sets the starting position for the axes, and
runs YAxis and Xaxis.

Here is the definition for DrawAxes:

to drawaxes :startpos :scale
;x and y axes
;starting position is bottom left

pu setpos :startpos pd Sets the starting position
yaxis :scale

xaxis

end

Try out:

drawaxes [-100 -551 15

Graphics

Use SetPWidth to set the width of the bars. (The PWidth operation outputs the
current pen width.)

The procedure to draw one bar has :Height as its input. After the turtle draws a Draw one bar
bar, the procedure returns the turtle’s line to its normal width.

to bar :height
;draws a wide line for a bar

setpwidth 20 Sets pen width to 20.

pu fd 10 pd Centers the wide pen above the axis.
fd :height

bk :height

pu bk 10 pd Centers the narrow pen on the axis.
setpwidth 1 Sets pen width back to normal.

end

74 Creating a Bar Graph Project

To place the turtle to draw each bar side by side, use the Position procedure.

to position :distance

smoves turtle to draw next bar
rt 30

pu fd :distance pd

1t 90

end

Now, type:

setu
drawaxes [-100 -551 15
repeat 4 [position 40 bar 1001

Graphics

Step 3: Determining the Bar Height

The ReadWord ReadWord (RW for short) reads a word or a line of words typed at the
operation keyboard and outputs the information to another procedure. For example, if
you type:
print readword Press Enter.

the insertion point waits at the beginning of the next line for you to type
something. You may type

echo Press Enter.
Logo responds:

echo

Step 3: Determining the Bar Height

Since ReadWord is an operation, it is used as an input to another procedure. In
this case, the word you typed at the keyboard was given to Print. Print then
printed the word.

You can name the output of ReadWord so that Logo will store it for future use.
To do this, use Name:

name readword "message

You type:

Hello

This time, the word isn’t printed again. When you type:
print :message

Logo responds

Hello

The line typed at the keyboard was picked up by ReadWord and stored under
the name Message. When you asked Logo to Print :Message, it printed the line.

In the bar graph project, ReadWord is used to pick up a number so this
information can be converted into an input for Bar.

Now, write a procedure that uses ReadWord to get the number of computers
that the company sold in a year. The year can be an input which will be passed
from the superprocedure.

to baramount :year
;jgets a number and draws a bar
print se [How many computers were sold inl :year

name readword / 100 "height Gets an answer.
position 40 Positions the turtle.
bar :height Draws the bar.

end

75

76 Creating a Bar Graph Project

The Sentence
operation

In BarAmount, Sentence (or Se) combines its inputs into a list.
To run BarAmount, give the year of your choice as input for now.
baramount 82

This question appears:

How many computers were sold in 82

If you type:

5000

Logo draws a bar 50 steps high (5000 / 100 = 50).

% File Edit L
Graphics

Editor

To baramount :year
;gets a number and draws a bar
print se [How many computers
name readword / 100 “height
position 40

bar :height

end

= ext

setup

baramount 1922

How many computers were sold in 1982

5000 I

Step 4: Labelling the Graph and the Bars
Step 4: Labelling the Graph and the Bars

In any bar graph, it’s a good idea to label the graph and the bars.

77

Printing text on the graphics window is almost the same as printing on a text Print on the
window. Since Logo normally prints on the current text window, a special graphics window
command is needed to direct printing somewhere else. Use the SetWrite

command:

setwrite "graphics The SetWrite
print [here I aml command

Graphics is the name of the window. After being given this instruction, the
Print command prints its input on the graphics window. (If your graphics
window is named something other than “Graphics”, give its actual name as
input to SetWrite.)

On a graphics window, printing in any available font is possible:

setfont "Venice Sets the printing font. Change the
setasiyle [0 14] Changes the printing style. printing font
print [pretty fancy!]

Graphics

her= | am

pretty fancy!

setfont "Monaco Restores the original font
setsiyle [0 9] and style.

For more information on fonts and printing styles, see Chapter 10, “Graphics”,
of the Reference Manual.

78 Creating a Bar Graph Project

The SetCursor
command

Write a general
graphics printing
procedure

Give a title to the
graph

To return printing to the text window, type:
setwrite "text

Printing on the graphics window starts from the cursor position. The
SetCursor command is used to position the cursor on the graphics window,
just as SetPos positions the turtle. The GrPrint procedure takes two inputs: the
word or list to print as a label on a graphics window, and the cursor’s position.

to grprint :position :label

seiwrite "graphics Sets the graphics window for printing.
setcursor :position Sets the cursor’s position.

print :label Prints the label.

selwrite "lexl Restores the text window for printing.

end
If you want to place the title “Computer Sales” just above the bar chart, type:
grprint [-50 701 [Computer Sales]

Now use the GrPrint procedure to put the year labels on the bars of the graph.
GrPrint should be added as a subprocedure to BarAmount. The reason for this
is that it’s easy to calculate the position for printing. After each bar has been
drawn, the turtle is on the x-axis of the graph, at the position of the bar. The
Pos operation outputs the turtle’s position:

print pos

The printing cursor can be moved to wherever the turtle is by using the output
from Pos, as the input to SetCursor. Try it:

setwrite "graphics

setcursor pos Sets the cursor to the turtle’s position.
print [Where’s the turtle?]

forward 100

setcursor pos Sets the cursor to the turtle’s position.
print [Here’s the turtilel

Step 4: Labelling the Graph and the Bars

Graphics

Computer|Sales

here's the turtle?

Iﬁere's the turtle
1

On the graph, you want to print the label below each bar. That can be done by

backing the turtle up 15 steps before setting the cursor, then moving it
forward again.

79

to baramount :year Label the bars
;gets a number and draws a bar

print se [How many computers were sold inl :year
name readword / 100 "height

position 40

bar :height

:labels the bar

pu bk 15 pd Backs the turtle up.
rprint pos :year Labels the bar.
pu fd 15 pd Restores the turtle’s position.

end

80 Creating a Bar Graph Project
Step 5: Writing the Superprocedure

Finally, you need a superprocedure to put all the subprocedures together.
Write this procedure using the years of your choice as inputs to BarAmount:

to bargraph

setup

drawaxes [-100 -551 15

grprint [-50 701 [Computer Sales]
baramount 81

baramount 82

baramount 83

baramount 84

end

Now run it by typing:
bargraph

Enter any four numbers to draw the four bars. The resulting graph will depend
on the inputs you give.

Graphics

Computer Sales

T 1 1 1 1 7T 1

21 82 23 a4

Step 6: Setting Up the Initial Windows 81

Step 6: Setting Up the Initial Windows
Once your program works, you may want to add some finishing touches. To
make your new program a little more “user-friendly”, it’s a good idea to

expand the SetUp procedure. It’s possible that the graphics window has been
changed in size or hidden behind other windows. Therefore, SetUp should:

1. Set the size and position of the graphics window, and clear it off.

2. Set the size and position of the text window, and clear it off.

The commands which set the size and position of windows are SetWSize (for The SetWSize
Set Window Size) and SetWPos (for Set Window Position). SetWSize takes two command
inputs: a name, so it knows which window to move, and a list of two numbers,

the width and the height of the window. If the graphics window named

Graphics is still on the screen, try:

setwsize '"graphics [200 2001

The window just became a 200 by 200 square. Notice that you set the size of
the “document portion” of the window; that is, the part of the window that
you can use, excluding the title bar and the scroll bars.

SetWPos also needs two inputs: the name of the window to be moved and its The SetWPos
new location in x-y coordinates. However, the coordinates are not graphics command
window coordinates, they are screen coordinates. In screen coordinates, [0 0]

is the top left corner of the screen. Try:

setwpos '"graphics [80 401

The window moved to the top of the screen (a y-coordinate of 40), near the
left (an x-coordinate of 80). Again you set the position of the document
portion of the window.

Edit SetUp to set the size and position of the graphics window:

to setup

recycle

ct

cg ht

setwpos "graphics [240 40] Sets the location of Graphics.
setwsize "graphics [250 2701 Setsthe dimensions of
end Graphics.

Try it out. To find out if Setup really works, move the window or make it
smaller with the mouse first.

82 Creating a Bar Graph Project

Now set the position and size of the text window. The name of the text
window when Logo starts up is Text. If you're using a text window with
another name, use that name as input. Edit SetUp again:

to setup

;clears and positions the windows
recycle

ct

cg ht

setwpos ' Sra phics [240 40]

setwsize "graphics [250 270]

setwpos "text [10 2201 Setsthe location of Text.

setwsize "text [210 901] Setsthe dimensions of Text.
end

® File Edit

Graphics

11T}
L]

Text

Program Listing

to bargraph

setup

drawaxes [-100 -551 15

grprint [-50 70] [Computer Sales]
baramount 81

baramount 82

baramount 83

baramount 84

end

to setup

;jclears and positions the windows
recycle

ct

cg ht

setwpos "ﬁrahics [240 401
setwsize "graphics [250 2701
setwpos "text [10 2201

setwsize "text [210 901

end

to drawaxes :startpos :scale

;x and y axes

;jstarting position is bottom left
pu setpos :startpos pd

yaxis :scale

xaxis

end

to yaxis :scale
setheading 0
drawmarks :scale
bk 120

end

to xaxis
setheading 90
fd 200 bk 200
1t 90

end

to drawmarks :int

repeat 120/:int [fd :int rt 90 fd 5 bk 5 1t 901

end

Program Listing

83

84

Creating a Bar Graph Project

to baramount :year

;gets a number and draws a bar
pr se [How many computers were sold inl
name readword / 100 "height
position 40

bar :height

;labels the bar

pu bk 15 pd

grprint pos :year

pu fd 15 pd

end

to position :distance

smoves turtle to draw next bar
rt 90

pu fd :distance pd

1t 90

end

to grprint :position :label
setwrite "graphics
setcursor :position

print :label

setwrite "text

end

to bar :height

;draws a wide line for a bar
setpwidth 20

pu fd 10 pd

fd :height

bk :height

pu bk 10 pd

setpwidth 1

end

syear

Program Structure of BarGraph 85
Program Structure of BarGraph

BarGraph
| — 1
setup J] DrawAxes ’ GrPrint BarAmount

[YAxis || HAxis I

| Pusiltion] | Bar | | GrPrint

Reflection

Operations

ReadWord and Sentence are operations, as are PWidth and Pos. An operation
always produces an output that becomes the input to another procedure, Pos
is used as an input to SetCursor. Unlike commands, operations can’t be the sole
instruction on a line.

The power of operations such as Pos is evident when they are used as inputs.
Finding an exact position becomes unnecessary. In these cases, the computer
does the work for you.

Some Notes on ReadWord

When using Readword, it is important to understand that Logo reads the line as
aword, even if you type a series of words. For example, type:

name readword "anything PressEnter.
then type:

this is a line with spaces

86 Creating a Bar Graph Project

Now use the WordP operation to check if :Anything is a word:
print wordp :anything

Logo responds:

TRUE

Window Coordinates and Screen Coordinates

The graphics window always has the coordinates of [0 0] as its center, no
matter what its size or location.

The screen has the coordinates of [0 0] on the top left corner. This means that
the screen coordinate system looks quite different from the window
coordinate system.

The screen coordinates are always the same, but since a graphics window may
be large or small, anywhere on the screen, the window coordinates only have
meaning relative to the center position.

rl% File Edit K

[0 0] Graphics

[0 0] é

ICHE—————————— “

[T}
L]

[c>

1]

Window Coordinates and Screen Coordinates 87

Exploring Further

Write a bar graph procedure that is flexible enough to process a large amount
of data. (Your program would have to divide the x-axis line into equal parts.)

Plot a line graph from peak to peak on the bars.

Modify BarGraph so the bars aren’t drawn until all the data is collected, then:

[A] Scale the y-axis to the height of the largest amount.

[2] Calculate the data in terms of percentages.

Logo Vocabulary

Commands

SetCursor

SetFont

SetHeading SetH

SetPos (for Set Position)

SetStyle

SetWPos (for Set Window Position)
SetWrite

SetWSize (for Set Window Size)

Special Words

Venice
Monaco

Operations

Pos (for Position)
PWidth (for Pen Width)
ReadWord RW
Sentence Se

WordP (P for Predicate)

89

9 Manipulating Text

Programs that build, analyze, and restructure words and sentences can be used
as the basis for other projects such as questionnaires and quizzes. This chapter
develops two “text manipulation” projects. In this context, new primitive
procedures that act on words and lists are introduced, and you are shown how
to write your own operations.

The first project is a random sentence generator, that generates sentences in
the following form:

Dogs dance
Computers laugh
People bark
People beep

The second project analyzes and restructures words. Its function is whimsical:
to change words ending with “ght” (for example, light) to end with “te” (lite).
A phrase such as “light beer” becomes “lite beer”.

90 Manipulating Text

Action

Generating Random Sentences

The random sentence generator produces sentences by combining words that
are chosen randomly. This can produce interesting and amusing results.

This program can be written by following these steps:

Plan the steps Step 1: Create two lists. Write a procedure that will pick words at random
from a list.

Step 2: Write the procedure to generate sentences and then write the
superprocedure.

Step 3: Extend the sentence generator by adding adjectives and adverbs.

Step 1: Creating Lists and Picking a Random Word

Before beginning, increase the size of the text window so you can see the
results of your work. Then create a list of nouns and a list of verbs. Since Logo
has to store them in memory, use Name to name them. Any words will do in
these lists. These are just examples:

name [children dogs computers peoplel "nouns
name [laugh bark beep dancel "verbs

The ltem operation To select a word from a list, use Item:
print item 3 :nouns
Logo responds:
computers
print item 1 :verbs
Logo responds:

laugh

Step 1: Creating Lists and Picking a Random Word 91

If you use Random as the first input to Item, you can select a random word:
print item random 4 :nouns
Try this line a few times. What happens if Random 4 outputs 0? Logo prints:

ITEM doesn’t like 0 as input

To prevent Random from producing 0 as its output, add 1 to Random as in
1+ Random 4. The instruction line selecting a random word from a list can
then be generalized into a procedure:

fo pick z21ist Define an operation to
output item (1 + random count :1list) :list pick a word
end

The Output command makes Pick an operation. Output outputs an element of
the input list extracted by Item.

The Pick procedure accepts a list of any length as its input by using the Count
operation.

Count counts the number of elements in its input and outputs that number.
Pick is a useful tool. For example:

print pick :nouns

may print:

dogs

Try Pick again. You’'ll probably get a different result:

print pick :nouns

may print:

children

92 Manipulating Text

Step 2: Writing the Sentence Generator

This procedure uses Pick to randomly pick nouns and verbs and combine them
in a sentence:

to talk

print se pick :nouns pick :verbs
talk

end

Since the procedure is recursive, it will print many random sentences until you
choose Stop.

Y a
® fie d

talk

Y wy chi ldren bark
TO TALK S |ehildren dance
pr se g {85 #L lpeople laugh
talk facia % i |people dance
END computers dance
dogs bark
Saiacl B ¥4 |people bark
dogs beep

chi ldren beep
343 i1 #i{ |dogs laugh

chi ldren dance
computers beep
people dance
Help wi | dous basp

_____ computers laugh
N_chi Ldras-m——"" %

~.

fipar N

Although the sentence generator appears complete, one problem remains: the
noun and verb lists were not named in a procedure. This means that every time
you run Talk, you have to check if :Nouns and :Verbs have values. It's more
convenient to write a superprocedure that names the noun and verb lists, and
runs Talk.

to randomsengen

name [children dogs computers peoplel "nouns
name [laugh bark beep dancel "verbs

talk

end

Step 3: Extending the Sentence Generator 93
Step 3: Extending the Sentence Generator

At this point, you could make the sentences more interesting by adding
adjectives and adverbs. In RandomSenGen, add adjectives and adverbs to the
names. Put your choice of words in their lists.

to randomsengen

name [children dogs computers peoplel]l "nouns
name [laugh bark beep dancel "verbs

name [red blue green Kellow] "adj

name [loudly quietly happily sadlyl "adv
talk

end

Talk must be edited to add adjectives and adverbs to the sentence printed. To The Wait Command
slow down the sentences so they can be read, insert Wait before the recursive

line. Wait makes Logo pause for the length of time given by its input in 60ths of

asecond. Wait 60 makes Logo pause for 1 second.

to talk

pr (se pick :adj pick :nouns pick :verbs pick :adv)
wait 60

talk

end

Notice that when Se (Sentence) has more than two inputs, you must put
parentheses around Sentence and its inputs.

Trying RandomSenGen may print funny combinations of words:

red dogs laugh quietly

blue computers beep loudly
green children dance happily
yellow people bark sadly

94 Manipulating Text

Plan the steps

The MemberP
operation

The ButLast operation

Generating a ‘‘Dialect”

The dialect generator takes a phrase or a sentence and changes all words
ending with “ght” to end with “te”.

To write this program, follow these steps:

Step 1: Examine a word for “ght”. Replace “ght” in a word with “te”.

Step 2: Write a superprocedure to replace all the “ght” words in a list.

Step 1: Examining and Replacing Part of a Word

The simplest way to examine a word for the presence of a letter or group of
letters is MemberP. MemberP is a predicate like EmptyP. MemberP (P for
Predicate) checks if its first input (a word or list) is an element of its second
input (a word or list). Try:

rint memberp "k "macintosh
EALSE

The instruction tells Logo to check if the character £ is in the word macintosh.
It isn’t there, so MemberP outputs False.

The last three letters will be removed from a word ending in “ght” by ButLast
(or BL for short). ButLast outputs all but the last element of a word or list.
ButLast will be used three times in a row; three ButLast’s leave a word with the
last three letters missing.

print bl bl bl "night
ni

Step 1: Examining and Replacing Part of a Word 95

Use Word to “glue on” the new ending “te”. Word creates a new word made The Word operation
up of its inputs:

print word "ni "{e
nite

Combining Word and ButLast in one instruction does the “cutting” and
“pasting” in one step:

print word bl bl bl "night "te

hile
Examining and replacing part of a word can be the job of one procedure. The Define an operation to
ChangeTag procedure is an operation that uses MemberP to check if a word examine and replace

ends with “ght”. If “ght” is found, these letters are chopped off the word, and
the letters “te” are added. If the word doesn’t contain “ght”, the input word is
output without any change.

IfElse is a conditional like If, except it can run one of two instruction lists: the IfElse: a conditional
first instruction is run when the predicate or condition is True; the second,
when it is False,

to changetag :wd

ifelse memberg "ght :wd— Press Tab and Space bar.
lop word bl bl bl :wd "tel— PressTaband Space bar.
[op :wdl

end

Note To “format” lines so they carry across more than one screen line, press
the Tab key instead of the Return key. A continuation arrow appears and you
can put spaces at the beginning of the next line. Using Tab and spaces will
increase the readability of long lines.

Test ChangeTag:

print changetag "alright

alrite The word with “ght” is changed.
print changetag "lettuce

lettuce A word without “ght” is left alone.

96 Manipulating Text

Define a recursive
operation

Step 2: Writing a Superprocedure to Replace Words in a List

You now can change a part of one word. The next step is to take a list and
change only the relevant words. The superprocedure should take the list:

star light star bright
and change it to:
star lite star brite

The Dialect superprocedure is a recursive operation that accomplishes this
task. Dialect takes a list, passes one word at a time to ChangeTag, and outputs
the updated list.

Dialect uses the primitive procedure FPut (for First Put) to create a list by
putting its first input at the beginning of its second input, a list.

to dialect :list

;changes "ght words in list to "te Thecommentline.
if emptyp :list [op [11 The|[]is an empty list.
op fput changetag first :1ist dialect bf :1list
end

Now try Dialect:

print dialect [Star light star bright]
Star lite star brite

print dialect [l see the lightl

I see the lite

Global Variables

Reflection

Global Variables

Did you notice that Talk doesn’t have inputs on the title line, but still uses the
lists named Nouns and Verbs? The lists were named with Name outside the
procedure, but are accessible inside the procedure. This is because variables
created with Name are global, that is, they are accessible to every procedure
in the workspace.

Operations Written in Logo

Pick, ChangeTag, and Dialect are all operations. They are the first operations
introduced that are not primitive procedures. Output is the command that
makes these procedures operations. Output takes its input and sends it to
another procedure.

Pick is very useful because it is used as an input. This is only possible because it
is an operation. What would happen if Pick was a command? Replace Output
with Print and experiment.

to picker :list
pr item (1 + random count :list) :list
end

picker [a b c de ¥ gl
c

Picker is static: we can’t do anything else with it except look at the result.
Compare it with this:

print == piek [A B Cl piek = b ol
B c

97

98 Manipulating Text

Recursive Operations

Unlike Pick and ChangeTag, Dialect is recursive. When a recursive procedure
acts as an operation, the passing of information occurs not only between the
recursive procedure and its superprocedure, but also between each round of
recursive subprocedures.

In the Dialect procedure, the line:
op fput changetag first :list dialect bf: list

is difficult to understand. The telescoping model provides a visual
representation of the process of running the Dialect procedure in the
instruction:

print dialect [light beer]

Process Output

Dialect [light beer]
If EmptyP [light beer] [OP []]
OP FPut [ChangeTag "light| |Dialect BF [light beer] |-{--~[lite beer]

i
p— ——
Dialect [beer]
ITf EmptyP [beer] [OP [1]

OP FPut [ChangeTag "beer| [Dialect BF [beer] |{—~Ibeer]
Dialect [] i
If EmptyP [110P []] o[Jomet

Dialect [light beer] runs two subprocedures, ChangeTag “light and Dialect
[beer]. Although ChangeTag outputs something immediately, Dialect [beer], in
turn, runs two subprocedures, ChangeTag “beer and Dialect []. When Dialect
[] runs, it outputs the empty list. This is passed to FPut in Dialect [beer].

Now dialect [beer| can output the result of [beer| to FPut in Dialect [light
beer]. Dialect [light beer| then outputs the result of [lite beer] to Print so the
instruction can be printed.

Remember that a recursive call is a subprocedure call. Each subprocedure
must finish running before the result of the instruction line is output.

Recursive Operations 99

Exploring Further

Write a program that generates rhyming poetry, using RandomSenGen as a
model.

Using Dialect as a model, write a program changing all words ending in “es” to
“ing”. Write a program that changes past tense verbs to present tense.

Logo Vocabulary
Commands Operations
Output OP ButLast BL
Wait Count
FPut (for First Put)
) IfElse
Special Keys Item

= bl o] 107
Tab (for formatting) Q)d(/‘:)?-]dbcrl (P for Predicate)

10 Building a Phone Directory

One of the uses of a programming language is to keep records. A large set of
records, stored in files, is often called a data base. Building a data base in Logo
can be accomplished in different ways. One way, to be shown in this chapter, is
through the use of property lists. A property list is a list of attributes and

values, associated with a name. It takes this form:

name [propertyl valuel property2 value2 property3 value3...]

For instance, look at the table or desk you're working at. It has a name (desk)
and a number of attributes or “properties”. It has the property of color. The
color may be brown. In that case:

name [property1 valuel |
desk [color brown |

The desk also has the properties of height, depth and width. With values for
these properties added, a property list for a desk might look like:

desk [color brown height 28" depth 30" width 62"]

Property lists are very useful for storing data by name and property. The
following program will use peoples’ names as the properties and phone
numbers as values, to create a phone directory that is a large property list
which can be printed out, saved in a file, and easily updated or added to.

You can modify the phone directory later to include anything you wish; for
example, addresses, birthdays, and favorite colors.

The project will be developed in the following steps:

Step 1: Entering the data in the form of a property list. This section will be
interactive.

Step 2: Printing out the phone directory clearly on the graphics window.

Step 3: Updating the phone directory so that numbers can be changed
or added.

101

Use a property list

Plan the steps

102 Building a Phone Directory

The PProp command

Use a procedure to
enter data

Action

Step 1: Entering the Data

Suppose you want the phone book identified by your name (“Laura’s Phone
Book™). The properties (your friends’ names) and values (their phone
numbers) can then be stored under your name. PProp (which stands for Put
Property) gives a name a property and a value. To give your friend Eric a
phone number:

pprop "Laura "Eric [373-56551 Lauraisyour name.
Eric is your friend.
373-5655 is Eric’s phone
number.

You could go on and enter your other friends’ phone numbers in this manner,
but it’'s much more convenient to write a procedure to put the data in the form
of a property list for you.

PhonelList asks for your name and your friends’ names, then runs a
subprocedure to add the phone numbers:

to phonelist

;builds a phone book using a property list

pr [What’s your name?]

name readword "myname Picks up your name.

pr se [List your friends’ names please,] :myname
name readlist "namelist Picksupalistoffriends.
addnumbers :namelist Adds the phone numbers.

end

AddNumbers is a recursive procedure that asks for each friend’s phone
number in turn, and puts the name and phone number into the property list
form of a property and value:

to addnumbers :namelist

if emptyp :namelist [stop]

pr se word first :namelist "’s [number is: 1
pprop :myname first :namelist readlist
addnumbers butfirst :namelist

end

Try out:

phonelist

Logo responds:

What’s your name?

You may type:

Laura Remember to press Enter.
Logo says:

List your friends’ names please, Laura

You may type:

Step 1: Entering the Data 103

Eric Judy Lorraine Alain Typethem all before pressing Enter.

Then Logo says:

Eric’s number is:
You may type:

373-5B55

And so on, until all the names in the list of friends have numbers.

Step 2: Printing Out the Phone List

You can view the property list you just created by using PList (for Property
List).

print plist "Laura This prints the property list
associated with Laura.

A list similar to this will be printed:

Eric [373 - 5655] Judy [738 - 1212]
Lorraine [212 - 88881 Alain [767 - 9999]

The PList operation

104 Building a Phone Directory

Print the phone list
in columns

Display the phone list
on the graphics
window

That's fine but hard to read. The list could be printed in columns:

Eric 373 - 5BES§
Judy 738 - 1212
Lorraine 212 - 8888
Alain 767 - 9999

You need to take the property list apart in order to print it. This can be the job
of the recursive procedure, ColumnPrint.

ColumnPrint uses the PadRight operation to print words or numbers in a fixed
number of spaces. This is how columns of information are printed. No matter
how many characters there are in a number or word, PadRight will output it
with a fixed number of characters, “padding” the spaces to the right of the
next word will be printed in a certain place. PadRight’s first input is the
amount of spaces allotted to the column; the second input is a word or list.

to columnprint :pPDES
;prints names and phone numbers in columns
if emptyp :props [stop]

type padright 15 first :props

pr first butfirst :props

columnprint butfirst butfirst :props

end

columnprint plist "Laura

You should see something like this:

Eric 373 - 5655
Judy 738 - 1212
Lorraine 212 - 8888
Alain 767 - 9999

A really elegant phone directory program would print the directory listing on a
graphics window, in a fancy font, perhaps with the title in a different font from
the listing.

Step 2: Printing Out the Phone List

ShowList is the procedure that prints the listing on the graphics window
(ColumnPrint becomes its subprocedure). At the same time, give the display a
title (for example, Laura’s Phone Book):

to showlist :phonelist

;displays the phone list on the graphics window
c

setwrite " ? raphics Sets printing to graphics window.
setcursor [-90 601 Positions the cursor at top left.
setfont "Venice Sets the letter font.

seistyle [0 14] Set the printing style.

(pr word :myname "’s [Phone Book1)

pr [1

setfont "Monaco

seistyle [0 12]

columnprint :phonelist Phone listing

setsiyle [0 9] Restores original style.
setwrite "text Restores printing to text window.
end

Try:

showlist plist "Laura

Graphics

Laura's Phone Book

Eric 373 - SAS6
Judy 738 - 1212
Lorraine 12 - G356

Alain THT - 9999

105

106 Building a Phone Directory

At this point, add ShowList to the original PhoneList superprocedure. After
entering the names and phone numbers, you will see everything listed.

to phonelist

jbuilds a phone book using a property list

pr [What’s your name?]

name readword "myname

pr se [List your friends’ names please,] :myname
name readlist "namelist

addnumbers :namelist

showlist plist :myname

end

Step 3: Adding and Changing Listings in the Phone Directory

The GProp operation This program must have the ability to change a phone number, or add a
friend’s name and number. Changing an existing phone number can be easily
done using GProp (for Get Property) and PProp.

For instance:

print gprop "Laura "Judy

prints Judy’s phone number:

738 - 1212

Then:

pprop "Laura "Judy [654 - 1111]

changes Judy’s phone number. You can check whether Judy’s number has
been changed by:

print gprop "Laura "Judy
or
showlist plist "Laura

Note To find Judy’s phone number with GProp, Judy must be typed exactly
as it was originally entered, in capital and lower case letters.

Program Listing 107

Now, write a procedure to change or add a phone number interactively. Write a procedure to
Update displays the current phone list, asks whose number you want to add or update the phone list
change, makes the change, then displays the updated list:

to update

jupdates the existing phone list
showlist plist :myname

pr [Whose number do you want to change or add?]
name readword '""name

(pr word :name "’s [old number isl—
gpro :myname :name)

pr [What’s the new number?]

prop :myname :name readlist
showlist plist :myname

end

To try out the program, type:

update

To erase the complete phone book and start fresh, use the command Erase the data
ErasePList (for Erase Property List), as in:

eraseplist plist "Laura

Program Listing

to phonelist

;builds a phone book using a property list

pr [What’s your name?]

name readword '"myname

pr se [List your friends’ names please,] :myname
name readlist "namelist

addnumbers :namelist

showlist plist :myname

end

to addnumbers :namelist

if emptyp :namelist [stopl

pr se word first :namelist s [number is: 1
pprop :myname first :namelist readlist
addnumbers butfirst :namelist

end

nmrs

108 Building a Phone Directory

to showlist :phonelist

jdisplays the phone list on the graphics window
c

5gtwrite ""graphics

setcursor [-90 601

setfont "Venice

setstyle [0 14]

(pr word :myname "’s [Phone Bookl)
pr [1

setfont "Monaco

5et5tyle [0 12]

columnprint :phonelist

setstyle [0 9]

setwrite "text

end

to columnprint :PPOﬁE
sprints names and one numbers in columns
if emptyp :Erops [stop]

type padright 15 first :props

pr first butfirst :props

columnprint butfirst butfirst :props

end

to update

;updates the existing phone list
showlist plist :myname

pr [Whose number do you want to change or add?]
name readword "name

(pr word :name "’s [old number isl—
gpro :myname :name)

pr [What’s the new number?]

pprop :myname :name readlist
showlist plist :myname

end

Program Structure of PhoneList

Phonelist Update

| | I |
|ﬂanumDers| ‘ ShowlList l

ColumnPrint

Reflection

The Elements of a List

It may be confusing to distinguish the elements of a property list. The property
list

[Eric [373 - 5655] Judy [738 - 1212] Lorraine [212 - 8888]]
has 6 elements. The first element of this list is Eric, and the sixth is [212-8888].

The organization of this list makes writing a recursive procedure to print each
element fairly simple. ColumnPrint prints two elements of its input at each
round of the recursive call. Since there are two elements printed, the recursive
line (ColumnPrint ButFirst ButFirst :PList) uses two ButFirst’s to drop off two
elements each time.

Replacing an Element in a Property List

An interesting aspect of property lists is the way elements in the list can be
accessed and replaced. The way to access elements in standard Logo lists is by
using word and list operations (First, ButFirst, Item, etc.). Instead, with
property lists, you can access the value of a property directly using GProp, and
replace it using PProp. This makes property lists easier to update, since an
element is replaced or added by name, not by its placement within a list.

The Elements of a List 109

110 Building a Phone Directory

Exploring Further

Add addresses and birthdays to the phone list program.

Examine other ways of creating a data base in the sample programs (look at the

Samples Menu file).

Logo Vocabulary

Commands

ErasePList ErPL (for Erase
Property List)

PProp (for Put Property)

Type

Operations

GProp (for Get Property)
PadRight

PList (for Property List)
ReadList RL

A Concluding Note by Seymour Papert

When I have learned something new, I am full of questions. Some about the
subject matter: what have I learned, where do I go from here? Some about
learning: what kind of a learning experience was this, what did I learn about
learning? Some about myself and other people: have I learned something new
about myself and my relationship with other people?

I hope Logo has left your head buzzing with such questions. Of course I can’t
answer them for you but a few guidelines might help.

The only way to find out what you have learned is to use it. You have seen
examples of Logo programs. Try your hand at inventing some of your own. If
you are a cautious person, start by making first small, and then larger,
modifications to our programs. If you are a risk taker, try something very
different. Both routes can take you a long way.

Whichever route you take, you must not expect, or want, everything you try to

work out. You will be experimenting with your knowledge of Logo, testing and

extending its limits and finding out what style fits you best.

When your projects don’t work out, take a hard look at the reasons. If you get a
large number of inexplicable error messages, you are probably missing a
fundamental concept. Perhaps you should go through this guide again trying to
write some simple programs, quite similar to our examples. If your procedures
run but don’t do what you hoped they would, you can take two tacks. One is to
stand back from the project, rethink your goal and start again with a more
carefully structured plan. Or you can stick with your partially working

program and develop it through understanding its strengths and weaknesses.

You are at a particularly exciting point when your procedures run, but you
may suspect there are better ways to get the same results. You are ready to go
on to learn more Logo than we have shown in this guide. I have four pieces of
advice about how to do this.

111

112 A Concluding Note by Seymour Papert

The first is to dip into the Reference Manual. Logo has many more primitive
procedures than you have seen in this guide and there are ways to understand
the language more deeply than those shown so far. Read Chapter 2, “Logo
Grammar”, of the Reference Manual carefully. You can browse through the
rest. Treat the manual like a dictionary. Whenever you use a Logo primitive
procedure, look it up. Read its description and skim through the procedure
descriptions in the same section.

Another place for browsing is the collection of sample programs on your Logo
disk or Logo programs in the growing literature on Logo. You should learn a
computer language like you would learn a natural language: first and foremost
by expressing yourself in it but also by reading it. Read programs as well as
writing them.

My third piece of advice for how to get a deeper understanding of Logo has
already been stated several times: write lots of programs, learn by doing.

And finally the most important advice of all is THINK ABOUT your program.
Best of all find someone to talk to, to think with. One learns best by doing... and
by thinking about what one has done.

Seymour Papert

Other Books About Logo

Here are some other books that have been written about Logo. They can
provide ideas for projects and additional information on the concepts and
philosophy of Logo. Check your bookstore for more books.

Apples Logo, by Harold A. Abelson. Published by Byte Books, McGraw-Hill,
1982.

Turtle Geometry: The Computer as a Medium for Exploring Mathematics, by
Harold A. Abelson and Andrea diSessa. Published by MIT Press, 1981.

Logo for Apples Computers, by Roger W. Haigh and Loren E. Radford.
Published by John Wiley and Sons, Inc., 1984.

Mindstorms: Children, Computers, and Powerful Ideas, by Seymour Papert.
Published by Basic Books, 1980.

Introducing Logo, by Peter Ross. Published by Addison-Wesley, 1983.

Discovering Apples Logo, An Invitation to the Art and Pattern of Nature, by
David Thornburg. Published by Addison-Wesley, 1983.

113

Index

()93
<, 64
> 63
:’63
u52
. 42
[11
11
+,16
/,16

addition+, 16
AddNumbers, 102

Back Bk, 8
Backspace key, 10
Bar, 73
BarAmount, 75, 79
BarGraph, 80
brackets|], 11
bugs, 17

ButFirst BF, 60
ButLast BL, 94

Cancel, 35

CG (Clear Graphics), 9
ChangeTag, 95

Clear, 10

close box, 16

closing windows, 16
colon :, 42
ColumnPrint, 104
commands, 30
Comment ;, 52
condition, 63
coordinates, 72

Copy, 26

copying the master disk, xi
Count, 91

CT (Clear Text), 10
Curl, 62

cursor position, 78
Cut, 26

defining
operations, 91
procedures, 21
procedures with inputs, 42
recursive operations, 98
recursive procedures, 49, 57
Demo Menu, x
demonstration programs, x, 6
Dialect, 96
division/, 16

Dolt, 3

DrawAxes, 73
DrawMarks, 71

Edit, 25

editing a procedure, 25
Editor, 23

editor window, 23

empty list, 61

EmptyP (P for Predicate), 61
empty word, 61

End, 23
Enter key, 3
equals =, 63

ErAll (Erase All), 36
EraseFile ErF, 37

ErasePList ErPL (Erase Property

List), 107

EraseProc ErP (Erase Procedure), 34

erasing
files, 37
graphics, 9
procedures, 34
property lists, 107
text, 10

115

116

Index

False, 63
FatSquares, 32
files
erasing, 37
listing, 35
loading, 37
saving, 35
file space, 39
FillSh (Fill Shape), 12
fonts
Monaco, 77
Venice, 77
formatting, 95
Forward Fd, 8
FPut (First Put), 96

global variables, 97

GProp (Get Property), 106
Graphics, 2

graphics window, 2
greater than >, 63

GrPrint, 78

Heading, 58

Help, 6

HideTurtle HT, 7
Home, 9

House, 29

If, 63

IfElse, 95

inputs, 8, 17, 41
insertion point, 3
interactive program, 67
Item, 90

Left Lt, 8
less than <, 64
List, 11
Load, 35
loading
files, 37
windows, 37

Many, 44

MemberP (P for Predicate), 94
Monaco, 77

Move, 27, 28

Name, 59
naming a procedure, 29

Open Editor, 22
Open Window, 13
opening windows, 13
operations, 30, 85
Output Op, 91
outputs, 30

PadRight, 104
parentheses (), 93
Paste, 26
PenDown PD,9
PenErase PE,9
PenReverse PX, 32
PenUp PU, 12
PhonelList, 102, 106
Pick, 91
Picker, 97
PList (Property List), 103
Poly, 49, 59, 60
POProc POP (Print Out
Procedure), 34
Pos (Position), 72
Position, 74
POTS (Print Out Titles), 33
PProp (Put Property), 102
predicate, 63
primitive procedures, ix, 29
Print Pr, 11
printing
on graphics window, 77
pictures, 29
printing out
procedures, 34
titles, 33
procedures
defining, 21
editing, 25
erasing, 34
naming, 29
primitive, ix, 29
recursive, 49, 57
subprocedures, 28, 30
superprocedures, 28, 30
Procedures, 34
property lists, 101
PWidth (Pen Width), 73

Quit, 36
quitting Logo, 36
quotation mark “, 11

Random, 27,91
RandomSenGen, 92,93
ReadList RL, 102
ReadWord RW, 74, 85
recursion, 55, 65
recursive line, 49
recursive procedures, 49, 57
Recycle, 57

Repeat, 11

Return key, 3

Right Rt, 8

Save, 35
saving
windows, 37
workspace, 35
screen coordinates, 81, 86
scroll bar, 34
Sentence Se, 76
SetCurrent, 15
SetCursor, 78
SetFont, 77
SetHeading SetH, 71
SetPos (Set Position), 72
SetPPattern (Set Pen Pattern), 12
SetPWidth (Set Pen Width), 32
SetStyle, 77
SetUp, 70, 81, 82
SetWPos (Set Window Position), 81
SetWrite, 77
SetWSize (Set Window Size), 81
ShowlList, 105
ShowTurtle ST, 7
Sky, 28, 45, 46
Spi, 52,53, 58
SpinSquare, 25
Spiralln, 64
Square, 23, 42
Star, 26, 44
starting Logo, 1
Stop, 50
stop rules, 57
subprocedures, 28, 30
Sun, 51
SuperPoly, 59, 60
superprocedures, 28, 30
Surprise, 62

False — YAxis 117

Tab key (formatting), 95
Talk, 92,93

Text, 2

text window, 2

title line, 23

To, 23

Total Turtle Trip, 30, 55
Tri2, 63

Triangle, 60, 61

True, 63

turtle, 7

Type, 104

Update, 107

variables
global, 97
inputs, 41

Venice, 77

Wait, 93
window coordinates, 86
windows
closing, 16
editor, 23
graphics, 2
opening, 13
text, 2
word, 11
Word, 95
WordP, 86
workspace, 33
writing procedures, 21

XAxis, 72

YAxis, 71

Microsofte MacLibrary..

Product Problem Report
10700 Northup Way, Box 97200, Bellevue, WA, 98009

Use this form to report software problems, documentation errors, or suggested
enhancements. Please send the form to Microsoft MacLibrary.

Name

Street

City State Zip

Phone Number () Date

MacLibrary Product Name

Version Number Registration Number

Category of Problem

Documentation Error
(Document and page number)

__ Software Problem

Suggested Enhancement — Other

Description of Hardware

— 128K Macintosh — 512K Macintosh
— Lisa 2/10 — Other
2nd Disk Drive — Other Peripherals

Hard Disk Manufacturer. Size

Problem Description

Please describe or attach a listing of the problem.

Yes

Can the problem be duplicated?

No

-
CAREFULLY READ ALL THE TERMS AND CONDITIONS OI':_'THIS M Ic rosoft

AGREEMENT PRIOR TO OPENING THIS DISK PACKET. OPEN

DISK PACKET INDICATES YOUR ACCEPTANCE OF THESE TEHMS AND =

CONDITIONS. Icense
If you do not agree to these terms and conditions, return the unopened

disk packet and the ather components of this product to the place of purchase and

your money will be refunded. No refunds will be given for products that have an A reement
opened disk packet or missing components.

1. LICENSE: You have the non-exclusive right lo use the enclosed program.

This program can only be used on a single computer. You may physically transfer

the program from one computer to another provided that the program is used on only one computer at a time. You may not
electronically transfer the program from one computer to another over a network. You may not distribute copies of the
program or documentation to others. You may not modify or translate the program or related documentation without the
prior written consent of Microsoft.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM OR DOCUMENTATION, OR ANY
COPY, EXCEPT AS EXPRESSLY PROVIDED IN THIS AGREEMENT.

2. BACK UP AND TRANSFER: You may make one (1) copy of the program solely for backup purposes. You must
reproduce and include the copyright notice on the backup copy. You may transfer and license the product to another party
if the other party agrees to the terms and conditions of this Agreement and completes and returns a Registration Card to
Microsoft. If you transfer the program, you must at the same time transfer the documentation and backup copy or transfer
the documentation and destroy the backup copy.

3, COPYRIGHT: The program and its related documentation are copyrighted. You may not copy the program
or its documentation except for backup purposes and to load the program into the computer as part of executing the
program. AII other copies of the program and its documentation are in violation of this Agreement.

TERM: This license is effective until terminated. You may terminate it by destroying the program and docu-
mentalion and all copies thereof. This license will also terminate if you fail to comply with any term or condition of this
Agreement. You agree, upon such termination, to destroy all copies of the program and documentation.

5. HARDWARE COMPONENTS: Microsoft product hardware components include cnly Microsoft circuit cards,
power supphes product housings, and electrical cords.

MITED WARRANTY: THE PROGRAM IS PROVIDED "AS IS WITHOUT WARRANTY OF ANY KIND.
THE ENTIHE RISK AS TO THE RESULTS AND PERFORMANCE OF THE PROGRAM IS ASSUMED BY YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT MICROSOFT OR ITS DEALERS) ASSUME THE
ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. FURTHER, MICROSOFT DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF
THE USE OF, THE PROGRAM IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR
OTHERWISE; AND YOU RELY ON THE PROGRAM AND RESULTS SOLELY AT YOUR OWN RISK.

Microsoft does warrant to the original licensee that the disk(s) on which the program is recorded be free from
defects in materials and workmanship under normal use and service for a period of ninety (90) days from the date of
delivery as evidenced by a copy of your receipt. Microsoft warrants to the original licensee that the hardware compo-
nents included in this package are free from defects in materials and workmanship for a period of one (1) year from the
date of delivery to you as evidenced by a copy of your receipt. Microsoft's entire liability and your exclusive remedy shall
be replacement of the disk or hardware component not meeting Microsoft's Limited Warranty and which is returned to
Microsoft with a copy of your receipt. If failure of the disk or hardware component has resulted from accident, abuse, or
misapplication of the product, then Microsoft shall have no responsibility to replace the disk or hardware component under
this Limited Warranty. In the event of replacement of the hardware component, the replacement will be warranted for the
remainder of the original one (1) year period or thirty (30) days, whichever is longer.

THE ABOVE IS THE ONLY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE THAT IS MADE BY MICROSOFT ON THIS MICROSOFT PRODUCT. THIS WARRANTY GIVES YOU
SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY FROM STATE TO STATE.

NEITHER MICROSOFT NOR ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION, PRODUC-
TION, OR DELIVERY OF THIS PROGRAM SHALL BE LIABLE FOR ANY DIRECT. INDIRECT, CONSEQUENTIAL, OR
INCIDENTAL DAMAGES ARISING OUT OF THE USE, THE RESULTS OF USE, OR INABILITY TO USE SUCH PROD-
UCT EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR CLAIM. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

7. UPDATE POLICY: In order to be able 1o obtain updates of the program, the licensee and persons to whom
the program is transferred in accordance with this Agreement must complete and return the attached Registration Card
to Microsoft. IF THIS REGISTRATION CARD HAS NOT BEEN RECEIVED BY MICROSOFT, MICROSOFT IS UNDER
NO OBLIGATION TO MAKE AVAILABLE TO YOU ANY UPDATES EVEN THOUGH YOU HAVE MADE PAYMENT OF
THE APPLICABLE UPDATE FEE,

8. MISC.; This License Agreement shall be governed by the laws of the State of Washington and shall inure to
the benefit of Microsoft Corporation, its successors, administrators, heirs, and assigns.

9. ACKNOWLEDGEMENT: YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT,
UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS, YOU ALSO AGREE THAT THIS
AGREEMENT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF AGREEMENT BETWEEN THE PARTIES AND
SUPERCEDES ALL PROPOSALS OR PRIOR AGREEMENTS, VERBAL OR WRITTEN, AND ANY OTHER COMMU-
NICATIONS BETWEEN THE PARTIES RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT,

Should you have any questions concerning this Agreement, please contact in writing Microsoft Corporation,
Customer Sales and Service, 10700 Northup Way, Box 97200, Bellevue, WA 98009,

CAREFULLY READ THE MICROSOFT LICENSE AGREEMENT
ON THE FRONT OF THIS PACKET BEFORE OPENING!

- The program on the enclosed

s .

disk(s) is licensed to the user. |

' By opening this packet, vbh
indicate your acceptance of the
Microsoft License Agreement.

Part No, 999-999-8708

) O O A A

(&

! Three Important
Reasons to
Register Your
Product Now

“¥ Microsoft
The help you need, whatever your application. We Hel p Houi ne

want you to get the maximum performance from your Microsoft software. If you have any
technical problem, we’ll be glad to help. However, most of the time you'll find the answer
right in your product documentation, so please take a look at that first. You might also give
your Microsoft dealer a call. If you're still puzzled, gather all the information pertinent to the
problem and call our Product Support staff at (206)828-8089. They'll be ready to give you

the support you need to get the most from your Microsoft software.

“ Microsoft
Product
Replacement

Plan If you need it, when you need it. In spite of rigorous
testing and the highest quality-control standards, even Microsoft products sometimes need
replacement. If your product proves defective, it will be replaced at no charge during the
warranty period, and for a reduced price thereafter. However, you must provide us with

proof-of-purchase and return the defective component to us.

If you think you may have a defective product, you’ll probably want to call our help hotline

at (206)828-8089 before mailing the product to us. When you have confirmed that a problem
exists, follow the instructions outlined in the attached product replacement card. Mail the
card, the defective component, your proof-of-purchase, and full details about the problem

you are experiencing to:

Customer Service Department
Microsoft Manufacturing

13221 S.E. 26th Street
Bellevue, WA 98005

Or call Microsoft Customer Service at (206)828-8088 for more information.

! Microsoft
Product
It keeps your program up to date. Your Microsoft soft- U pg rad e Plan

ware product uses the most advanced technology available today. But we continually
improve our software, making it even more powerful and easy to use. You can take advan-
tage of our ongoing research—if you send in your registration card today!

As a registered Microsoft user, you receive announcements about major improvements
in your program. These announcements give you the cost of the update and ordering
procedures. In most cases the enhanced version is available to you at a reduced price. Only
registered owners receive these special update notices. (Microsoft offers updates only for its
productivity tools and languages. Recreational software is not eligible for updates. Owners of
recreational products do not receive update announcements.)

Just Register Now.

= Microsoft
Software

Limited
Wal‘l‘anty M This limited warranty applies to the original purchaser
only and to the recording medium (disk) only, not to the

information encoded on it. This warranty covers disks included in Microsoft hardware/
software packages, such as the Microsofte SoftCards system products and the
Microsofte RAMCard= memory board for the IBM= PC.

M Microsoft hardware components include only . MICI‘OSOft
circuit cards and the mechanical mouse. Hardware

M |f a hardware component is included with your Limited

Microsoft product, the component is warranted
Warranty

M The disk on which your Microsoft program is recorded
is warranted to be free of defects in materials and work-
manship under normal use for a period of 90 days from
date of product purchase.

to be free of defects in materials and work-
manship under normal use for a period of one
year from date of product purchase.

M This limited warranty applies to the original product purchaser only and to the hardware
component only, not to the application for which it is used.

™ Disclaimer of

The Microsoft programs are licensed solely on an
“‘asis’’ basis. The entire risk as to their quality and
performance is assumed by the purchaser. MICRO-

Liability for
SOFT CORPORATION DOES NOT GUARANTEE,

Use and the WARRANT, NOR MAKE ANY REPRESENTATION
REGARDING THE USE OF, OR THE RESULTS OF
Results of USe 7 lse or 1 prosans v eavs o con
RECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE; AND THE PUR-
CHASER RELIES ON THE PROGRAMS AND THE RESULTS SOLELY AT HIS OR HER OWN
RISK. Microsoft Corporation assumes no liability for any direct, indirect, incidental or

consequential, special or exemplary damages, regardless of its having been advised of the
possibility of such damages.

A full description of the limited warranty for hardware and software and the terms of the above disclaimer of
liability are in the License Agreement that accompanies this booklet.

Microsoft, Multiplan, SoftCard, and RAMCard are registered trademarks and MS-DOS and The High Perform-
ance Software are trademarks of Microsoft Corporation.

Copyright 1984 Microsoft Corporation.

® New Answers
from the Oldest
We wrote the first BASIC for the very first personal Name in Micro.
computer
installed computer language, running on more SOﬂWElI'e

than two million machines. The same care and attention we put into Microsofte BASIC,

computer. Today it's the world’s most widely

we put into every product we sell today. The result?

Microsoft consistently delivers powerful, reliable, easy-to-use solutions for business,

industry, and education.

. Register Solutions like MS-DOS.., the most popular operating system for 16-

“ NDW! bit computers. Like Microsoft Multiplan=, the flexible, plain-English
electronic worksheet. Or like Microsoft Word, the writing system that's revolutionized word

processing.

Every Microsoft product is designed to be easy to learn and use, and to take full advantage
of your computer’s capabilities. Your new Microsoft program incorporates the most
advanced concepts in software today, to give you peak performance and to unlock the

power of your machine.

MICRSSOFT.

The High Performance Software

Please use this card when ordering a replace- PrOd u0t
ment for a defective Microsoft product. Mail it
with the defective component(s) to the address Replacement
below. To validate a replacement request for a
, product under limited warranty, include proof-of- Ord er card
i purchase. A product returned without proof-of-purchase is not eligible for warranty service.
If the product warranty has expired, or if the product does not qualify for warranty service,
j you will be charged a service fee. No out-of-warranty service will be performed prior to
| receipt of payment. You may include credit card information if you would like to charge the

service. You may call Microsoft Customer Service at (206)828-8088 to i mqmre about the
current charge for the service required. :

Name
(Please include all information required for delivery including company name, mailstop,
and apartment or suite number, if applicable.)
Address
Street
City State Zip Country
Phone () Telex

Registration number on disk

Name of product as it appears on package

Date of product purchase / /
Month Day Year

Reason for return

If the warranty has expired, | authorize you to charge my credit card. Charges vary. The
minimum service charge is $25.00. [] American Express []Visa [] MasterCard

Credit card number { | | | H J | ’ || | ‘ | i Expiration date

Authorized signature

Mail to: Customer Service Department
Microsoft Manufacturing
13221 S.E. 26th Street
Bellevue, WA 98005

Microsoft Corporation
10700 Northup Way

Box 97200
Bellevue, WA 98009

0984 Part No. 999-999-886

—

 MICRGSOFT

£, Microsoft Corporation -
E e ; : 10700 Northup Way

3 = s : x BOK 972m Sy g S L=
Bellevue, WA 98009 L .

gy
A

4 v
® “i- o
i 3 gt

g Yoy

~ Fiy, =

G e :

i 4
i

.
R ;
¥
: .
: 5
e
.

. *

= gt T '

0485 Part No. 080-096-001 5 R -

